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Abstract

Analyzing images, to estimate the underlying parameters that lead to their formation,

is fundamentally an inverse problem. Since the observed image alone is usually not enough to

uniquely determine these parameters, statistical models are frequently used to choose a likely solu-

tion from amongst those that are consistent with this observation. In this dissertation, we use such a

statistical approach to develop image models and corresponding inference algorithms for two vision

applications, and then explore image statistics in a new domain.

The first application seeks to segment moving objects from a static image using motion

blur as a cue. We introduce an image model defined in terms of a convenient local Fourier de-

composition, that captures the statistical properties of sharp edges while accounting for variations

in contrast. We then use this model to derive the likelihood of a candidate kernel acting in a local

region of the observed image, and combine this likelihood measure with color information for the

final segmentation.

The second application addresses the problem of color constancy and involves estimating

and correcting for the effect of an unknown illuminant on the colors in an observed image. We find

a joint spatio-spectral approach to be useful here, and describe a statistical model for the colors of

image sub-band coefficients. We derive an estimation algorithm to compute illuminant parameters

using this model and show that it can be conveniently extended to include prior knowledge about

illuminant statistics, when such knowledge is available.

Finally, we explore the statistical properties of hyperspectral images, i.e. those that include

dense spectral measurements at each pixel, using a new database of natural scenes. We determine

that the optimal basis to represent these images is separable along the spatial and spectral dimen-

sions, and then explore statistical models for coefficients in this separable basis.
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1
Introduction

“Facts are stubborn things, but statistics are more pliable.”

— Mark Twain

The image of a scene acquired by a camera depends on a variety of factors— scene geom-

etry, material properties, illumination, sensor noise, camera and object motion, etc. While knowing

these properties is of value to vision systems, their contributions to the final observed image are

usually confounding. Estimation is therefore often an ill-posed problem, meaning that there are

multiple solutions that explain the observed image and satisfy the image formation model equally

well. This chapter describes the utility of statistical modeling to solve such ill-posed estimation

problems, where a unique solution is arrived at by requiring it to be likely as well as consistent

with the observation. We give an overview of the approaches commonly used to define statistical

models, and to exploit them during inference. We also discuss other estimation strategies used for

visual tasks, and describe how they relate to these statistical approaches. Finally, we provide an

outline for the rest of this dissertation and list its contributions.
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Chapter 1: Introduction

Figure 1.1: Visual inference usually involves solving ill-posed inverse problems. Shown here is

the example for color constancy (explored in depth in Chapter 3), where the observed image is a

function of true scene colors and the scene illuminant, both of which are unknown. Estimating

these from the image is an under-determined problem, because there exist many plausible solutions

consistent with the observation.

1.1 Ill-posed Problems in Vision

A variety of computer vision tasks involve solving inverse problems. Depending on the

formulation, the observed image (or set of images) is modeled as a function of multiple unknown

variables, and the task is to infer one or more of these variables from the observation. Examples

include estimating the albedo and surface normals (for photometric stereo), the scene illuminant and

object colors (for color constancy), the blur point spread function (PSF) and latent sharp image (for

deblurring), etc. Even applications such as object recognition and detection can be interpreted as

inverse problems, where the unknown variables are the object or category label along with factors

such as pose and intra-class variability that contribute to the appearance of the object in the observed

image.

These inverse problems are often under-determined, i.e. there exist multiple combinations

of the unknown variables that all explain the observations equally well. At other times, while there

is a unique solution under ideal circumstances, the inverse map is “ill-conditioned”, meaning that

estimation is very sensitive to observation noise. To address the ill-posed nature of these problems,

researchers use knowledge of the statistical properties of one or more of the unknown variables to

2



Chapter 1: Introduction

identify solutions that are probable, from amongst the set that are physically plausible (i.e. consistent

with the observation).

Typically, these problems are parametrized such that one of the unknown variables is a

canonical image of the scene, i.e. one captured with some standard values for the other unknown

variables (under a standard illuminant, with no noise or blur, etc.), and therefore a lot of research

in computer vision has sought to define accurate and tractable statistical models for natural images.

These models are then used, occasionally along with models for the other scene parameters, to

derive the desired estimator. In the rest of this chapter, we discuss examples of image models and

inference strategies commonly used to solve real-world vision tasks, and relate them to a few other

common approaches that address ill-posed estimation problems. We then state the contributions of

this dissertation, and outline the contents of the remaining chapters.

1.2 Image Models

An accurate description of natural image statistics is crucial for many statistical inference

methods in vision, and therefore, a lot of research has been aimed at developing image models that

are accurate yet tractable. The first step in defining a model involves choosing an appropriate image

representation. Rather than modeling pixels directly, it is common to define these models in an

appropriately chosen transform domain. Formally, a linear map Φ is applied to an image I to yield

a set of coefficients S = Φ
TI . A probability distribution is then assigned to the elements of S, and

Φ is usually chosen such that these elements can be treated as being independent, or having limited

dependence. Inference is carried out on these coefficients, and if the task is to estimate the canonical

image, an inverse map Φ
−1 is applied on the corresponding estimated canonical coefficients.

The transform Φ is usually chosen to decompose an image based on spatial frequency,

scale, orientation, etc. Examples include using the block discrete cosine transform (DCT) [1], or a

basis derived from principal component analysis (PCA) [2] on image patches. These typically en-

3



Chapter 1: Introduction

DCT [1] Steerable Pyramids [5]

Redundant dictionary learned from data [6]

Figure 1.2: Image representations. Statistical models for images are typically defined in terms of

coefficients in some chosen transform domain. Shown here are the basis elements for three example

transform domains.

sure optimal energy compaction, and ensure that the transform coefficients are uncorrelated. Other

approaches, such as Gaussian and Laplacian pyramids [3] and wavelets [4], use a multi-scale ap-

proach to define the transform Φ. They decompose an image by applying sets of filters that are

scaled versions of each other. The corresponding coefficients S can then be grouped according to

these scales, and interpreted as forming an image pyramid.

The canonical versions of these transforms are defined such that the map Φ corresponds

to an orthonormal basis. However, researchers have often found over-complete representations to

be more powerful during inference. Such representations can be formed simply by not including

sub-sampling steps with pyramid-based transforms, or by considering overlapping patches with

DCT and PCA-based transforms. Thus, they achieve over-completeness by considering various

shifted versions of the corresponding complete transforms. In contrast, steerable pyramids [5] are

4



Chapter 1: Introduction

designed from scratch to be over-complete without the constraints of having an orthonormal basis,

and include basis filters at various orientations.

The coefficients corresponding to an over-complete transform are clearly not independent,

but they are often treated as such for convenience. For example, coefficients corresponding to

overlapping patches may be modeled independently. Note that in applications where the goal is to

estimate a corrected image, the overlapping corrected coefficients are also estimated independently,

and therefore need not be consistent. The inverse map Φ
−1 is then chosen accordingly to be a

pseudo-inverse that harmonizes these inconsistencies, for example, by computing an average of the

overlapping corrected patches.

Another approach, that is common with over-complete transforms, is to compute the co-

efficient vector through a minimization approach instead of a linear map [7, 8]. In fact, this min-

imization is often done simultaneously with the inference step. The set of basis elements here is

thought of as a redundant dictionary, and the corresponding coefficient vector is chosen so as to

be sparse, i.e. image regions are described as a linear combination of a small number of dictionary

elements. In addition to using standard representations (as described above), optimal dictionaries

that admit compact representations in this framework can also be learned from training data [6, 9].

In addition to the transforms described above to model generic images or patches, some

methods choose image representations tailored to specific discriminative tasks. These transforms

yield coefficient vectors (sometimes called feature vectors) that carry optimal information for some

classification or recognition problem. They can correspond to subsets of standard transforms [10],

statistical summaries of standard transform coefficients [11], or be learned from data [12].

Once an appropriate transform has been chosen, an image model is defined by assigning

appropriate distributions to the coefficients under that transform. Coefficients which correspond to

a local spatial average (also referred to as DC coefficients or scaling coefficients), are typically not

modeled, or assigned a uniform distribution. The remaining coefficients are usually found to have

zero-mean symmetric distributions. These are modeled using some convenient parametric form,
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Chapter 1: Introduction

such as the Gaussian or Laplace distributions, generalized-Gaussians, discrete or continuous mix-

tures of Gaussians, etc. When available, the parameters of these distributions can be set from training

data, either by fitting the empirical histograms or by validation to yield minimum error during in-

ference. Coefficients may be modeled independently, though sometimes joint models are defined

by encoding dependencies between the parameters of the per-coefficient distributions. For exam-

ple, coefficients may be modeled as Gaussian mixtures, with a statistical model over the mixture

parameters for different coefficients [13, 14].

While some of the above models have been used for color images (such as redundant dic-

tionaries for color patches [6]), a vast majority of work in image modeling has focused on greyscale

data. However, color statistics have been exploited in applications that explicitly depend on them.

Demosaicking applications [15] use models that encode the correlation between different color

channels to estimate a full color image from the sub-sampled data captured by a typical camera.

They are loosely based on the fact that discontinuous changes in intensities for different channels

co-occur at material boundaries. Image models for color constancy, on the other hand, have by

and large focused on the distributions of color vectors for individual pixels (see Chapter 3 for an

extended discussion).

The list of modeling strategies discussed in this section is far from being exhaustive. Many

specialized models have been developed for specific applications, such as those involving Bayesian

networks and Markov random fields to encode relationships between pixels and regions [16, 17].

Scene parsing and recognition applications frequently use image models based on semantic content

(object categories [18], identities of people [19], etc.) rather than (or in addition to) low-level

features. Overall, there is no one image model that is optimal for all applications and a choice needs

to be made based on the task at hand. None of these models completely capture all the statistical

properties of natural scenes— sampling from them will not yield a plausible image. Instead, one

aims to choose a model that encodes all image properties that are informative for the given task, and

allows inference at reasonable computational cost.

6



Chapter 1: Introduction

Table 1.1: Examples of observation models for different inference tasks

Task Model Remarks

Denoising J = I +Z Z = Unknown observation noise.

Demosaicking J =DI +Z D = Known color sub-sampling pattern.

Deblurring J = I ∗ k +Z k = Unknown blur point spread function.

Intrinsic Images J [n] = s[n]I[n] s[n] = Unknown shading coefficient at pixel n.

Color Constancy J [n] =MI[n] M = Unknown scene illuminant color.

1.3 Statistical Inference

A typical statistical inference task in vision is set up as follows: the observation J is mod-

eled as J = f (I;θ), i.e. a function of some canonical image I , which is assumed to be drawn from

an appropriately chosen distribution p(I), and other (potentially unknown) camera/environmental

parameters θ. Examples of f (·) for some applications are listed in Table 1.1. Note that in all these

examples, there is no unique solution for the unknown variables.

Given the observation J , the task may be to infer either the canonical image I , one of

the parameters θ, or both. Since the function f (·) is not directly invertible, the solution (for I or

θ, as the case may be) is chosen so as to maximize some statistically-motivated objective function.

In some cases, this objective function is simply chosen to be p(I |J ), p(θ|J ) or p(I ,θ|J ), i.e. the

likelihoods of candidate images, scene parameters, or combinations of the two, conditioned on the

observation J . To derive these likelihoods, one first defines the joint conditional density over all

unknown parameters as,

p(I ,θ|J ) ∝ p(I ,θ,J ) = δ (J − f (I;θ)) p(I)p(θ), (1.1)

where the delta function δ(·) enforces consistency between J , I and θ according to the observation

model in f (·). When available, prior knowledge of the statistics of the parameters θ is included in

the p(θ) term, otherwise it is omitted and all values of θ are assumed equally likely. The objective

7



Chapter 1: Introduction

function is then computed by marginalizing over all parameters other than those being estimated

(for example, p(I |J ) is computed by marginalizing over θ). Note that the solutions for I and θ

obtained by maximizing their joint conditional likelihood p(I ,θ|J ) need not be the same as those

derived from their individual likelihoods p(I |J ) and p(θ|J ).

Rather than set the objective to these conditional likelihoods, some methods define a no-

tion of the cost C(·, ·) of choosing an estimate I or θ, when the true value is I ′ or θ′ respectively.

The estimate is then chosen to minimize the expected value of this cost, under the conditional dis-

tribution for the true estimate computed as above. For example, the canonical image I may be

estimated as

I = arg min
I

∫

C(I , I ′)p(I ′|J )dI ′. (1.2)

The cost C usually corresponds to some form of error (such as the sum of squared differences, 0-1

error, etc.) between the estimate and true value. Minimizing the expected error can lead to more

robust estimates— as illustrated in Fig. 1.3, in some cases the conditional distribution itself is noisy

and choosing the most likely value may correspond to an isolated peak. The integration in (1.2) can

be thought of as applying a smoothing operation to this distribution prior to estimation.

To compute the estimate from these objective functions, one has to solve the correspond-

ing optimization problem. While there is sometimes a closed form expression for this solution, iter-

ative strategies are frequently required. These include gradient descent methods, iteratively solving

for a subset of the unknowns keeping the others constant, successively approximating the objective

function near the expected solution with a functional form that is easy to optimize, etc. Overall,

models and inference strategies are chosen so as to yield accurate estimates with minimal com-

putational expense. Sometimes, this involves choosing models with simplifying assumptions (for

example, treating overlapping patches as independent) to keep estimation tractable. In other cases,

the inference strategy is adapted for optimum performance on a specific application. For instance,

in many deblurring algorithms [20, 21] that seek to estimate the latent sharp image I from a blurry

8



Chapter 1: Introduction

Figure 1.3: Inference strategies. Shown here is the conditional likelihood for the variable being es-

timated, along with the expected cost under that likelihood. In this example, the likelihood function

itself has a few peaks that are isolated from the remaining region of high probability, one of which

corresponds to the single most likely value. Minimizing the expected cost (the squared-difference

cost is used here) effectively smooths out these peaks, and provides a more stable estimate.

observation J , a two-step estimation strategy is used— the blur parameter k is first estimated by

maximizing p(k|J ) (i.e. marginalizing over I), and then the sharp image I is computed by maxi-

mizing p(I |J ,k).

1.4 Related Approaches

In this section, we given an overview of some other commonly used approaches for solv-

ing ill-posed estimation problems. While they do not explicitly use statistical models, we shall see

that they do leverage statistical information implicitly.

1.4.1 Regularization

For a variety of inference problems in vision, estimation is done through a technique

called regularization. The observation J is related to the parameter of interest, say the canonical

image I as J = f (I). In contrast to the examples in Table 1.1, in this setup f (·) itself does not

typically account for observation noise. I is then estimated by minimizing a cost function of the

9



Chapter 1: Introduction

form:

I = arg min
I
‖J − f (I)‖e + α‖I‖r, (1.3)

where the first term penalizes the error in terms of the model (under some norm e), and the second

term regularizes the estimation problem to compensate for the fact that f (·) can not be directly

inverted. The parameter α is a scalar that weighs the relative contributions of these two terms.

Although this approach is often motivated without an explicit statistical characterization, choosing

the parameter α and the forms of the error and regularization terms amounts to making assumptions

about the statistics of the image and observation noise.

In fact, we can show that there is an equivalent statistical approach that leads to the exact

same expression as in (1.3). We update the observation model to include a noise term Z as

J = f̃ (I ,Z) = f (I) +Z, (1.4)

and choose the distributions for Z and I to match (1.3) as

p(Z) ∝ exp

(

−‖Z‖e
β

)

, p(I) ∝ exp

(

−‖I‖r
γ

)

. (1.5)

We can now compute I in this formulation by maximizing p(I |J ) as

I = arg max
I

p(I |J ) = arg max
I

∫

δ
(

J − f̃ (I ,Z)
)

exp

(

−‖Z‖e
β

)

exp

(

−‖I‖r
γ

)

dZ

= arg max
I

exp

(

−‖J − f (I)‖e
β

− ‖I‖r
γ

)

= arg min
I
‖J − f (I)‖e +

β

γ
‖I‖r, (1.6)

which is equivalent to the regularized estimate from (1.3), when α = β/γ. Therefore, the error

penalty in (1.3) can be interpreted as the log-likelihood of observation noise and the regularization

term as the log-likelihood of a candidate image. However, this connection is not always made when

setting up a regularization framework. This is appropriate in many cases when the models in (1.5)

are poor fits to observed empirical distributions, but the overall estimation strategy leads to desirable

results in practice.

10



Chapter 1: Introduction

1.4.2 Machine Learning

Learning-based methods like boosting, support vector classification and regression, etc. take

a different approach to estimation. They learn a mapping g(·) from the observation J to the variable

of interest, say θ. This mapping is chosen automatically from a space of functions H (sometimes

called the hypothesis space) so as to minimize estimation error on a training set of input-output pairs

{Jt,θt}Tt=1
. To prevent “over-fitting”, i.e. choosing a complex mapping that fits exactly to the data,

including small perturbations possibly caused by noise, these approaches also seek to simultane-

ously minimize some notion of complexity (often measured in terms of smoothness) of the chosen

map. Formally, the map g(·) is chosen as

g = arg min
g∈H

T
∑

t=1

1

T
err (g(Jt);θt) + α ‖g‖H , (1.7)

where the first term corresponds to error on the training set, and the second measures complexity

as described above. Note that the expression in (1.7) can itself be interpreted as a regularized esti-

mation framework, used here to choose the map g(·) based on training data. Once this inverse map

g(·) has been computed, it is applied directly to novel observations to compute the corresponding

estimates of θ.

There is a clear parallel between picking g(·) as per (1.7) and minimizing the expected

cost under a conditional distribution as described in Sec. 1.3. The summation over the training

set in (1.7) approximates the joint distribution p(J ,θ), and corresponds to choosing a map that

minimizes the expected error value under this distribution. This approach has various advantages—

one avoids making the assumptions that are implicit in defining an observation model, assigning

statistical distributions to the image and other parameters, etc.. All these decisions are assumed

to be made automatically by the training algorithm in (1.7) for optimal performance. This can be

useful when the actual observation model and statistics are unknown or hard to model, and the

learning method can be trusted to discover the attributes of the observation that are most useful for

computing an accurate estimate.

11
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However, learning-based methods make a design choice in picking the hypothesis space

H . The training step in (1.7) can at best learn the most accurate map in H , but H itself has to

be expressive enough and contain the class of functions appropriate for the estimation task. When

this task is complex, the hypothesis space H must be chosen to include adequately complex func-

tions, and a lot more training data is required to reliably learn the mapping g(·). In contrast, if the

observation model is known and a parametric form for image and parameter distributions has been

chosen, the parameters of these distributions can be learned with far fewer training samples and

using statistical inference methods may prove more convenient. Furthermore as noted in Sec. 1.3,

the optimal estimates derived from statistical models often do not have closed form solutions, but it

is impractical to define a hypothesis spaceH of maps that involve iterative computation.

In practice, statistical inference and machine learning serve as complementary approaches

for visual inference, with each being optimal for different types of applications, based on the com-

plexity of the problem and availability of training data. While it may be tempting to always use a

purely data-driven machine learning approach, the use of explicit statistical models and inference

approaches, that incorporate useful domain knowledge, can yield dividends in terms of improved

accuracy and speed for many applications .

1.5 Dissertation Outline

This dissertation seeks to demonstrate the efficacy of statistical modeling for visual in-

ference, and the design choices that need to be made to ensure accurate yet tractable inference

for different tasks. Accordingly, we present novel statistical estimation algorithms for two visual

inference tasks. Each involves the use of a different image model, individually adapted for each

application to encode different aspects of the statistical structure present in natural images.

Chapter 2 describes an algorithm to estimate the parameters of spatially-varying motion

blur acting on an image, allowing the segmentation of moving objects from a still image using
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this blur as a cue. We use an image model to describe texture content in greyscale images to

estimate blur parameters, and augment it with per-pixel color appearance models to carry out the

segmentation. Chapter 3 tackles the problem of color constancy, i.e. correcting for the color cast

in an observed image caused by the spectrum of the scene illumination. This lets us automatically

estimate a canonical white-balanced image, in which object colors are independent of illumination

and can serve as, say, stable cues for recognition. For this task, we introduce a joint spatio-spectral

model that encodes the color statistics of spatial sub-band coefficients.

In Chapter 4, we investigate the statistical structure of hyperspectral images, and dis-

cuss modeling strategies in that domain. Hyperspectral images provide higher-resolution spectral

measurements of the incident light at each pixel, and are expected to be useful for various vision

applications. Using a new database of hyperspectral images of real-world scenes, we explore the

statistical properties that are likely to be useful when building hyperspectral image models for sta-

tistical inference.

With the goal of ensuring that the research presented here is reproducible, we have made

prototype implementations of the presented algorithms as well as all newly collected image data

available for download [22–24]. Also, note that early versions of this research have appeared in the

following publications:

• Ayan Chakrabarti, Keigo Hirakawa, and Todd Zickler, “Color Constancy Beyond Bags of

Pixels,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2008.

• Ayan Chakrabarti, Todd Zickler, and William T. Freeman, “Analyzing Spatially-varying Blur,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2010.

• Ayan Chakrabarti and Todd Zickler, “Statistics of Real-world Hyperspectral Images,” in Pro-
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ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

We conclude the dissertation in Chapter 5 with an overview of the contributions, and

describe opportunities to expand on the insights developed here and apply them for use in other

applications.
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2
Estimating Blur

“The English can’t draw a line without blurring it.”

— Winston Churchill

The image of an object or region is blurred when a pixel receives light from multiple scene

locations, due to motion or defocus. This induced blur can vary spatially across the image plane as a

function of scene content, such as depth and object motion parameters. In this chapter, we describe

an algorithm that uses spatially-varying motion blur as a cue to segment out a moving object from

a still image. At the core of this method is an image model that encodes the statistical properties

of sharp edges, independent of their contrast. A local Fourier-based representation allows us to use

this model for tractable inference, to compute the likelihood of a local region in the observed image

being blurred by a kernel from a candidate set. This likelihood measure is then combined with a

color model in a Markov random field (MRF) framework to carry out the actual segmentation. The

method is evaluated on a diverse set of real images captured using a variety of cameras, and found

to perform well.
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Figure 2.1: What’s moving ? We seek to segment out a moving object (right) from a static single

image (left), using motion blur as a cue. We develop an image model and inference method that

allows us to determine the parameters of this motion blur, as well as the regions it affects.

2.1 Introduction

Blur refers to image degradation caused by a pixel recording light from multiple scene

points, and its common causes include camera shake, defocus, and object motion. Blur is charac-

terized by a kernel or point-spread function (PSF), which corresponds to the recorded image of a

single scene point of unit intensity. In a typical application this kernel as well as the corresponding

latent sharp image are unknown, and hence estimation is ill-posed. Moreover, when the cause of

blur is defocus or object motion, the kernel is not constant and changes across the image plane.

Such spatially-varying blur is even harder to analyze than its uniform counterpart because of the

larger number of unknown parameters. As a result, most methods for estimating spatially-varying

blur require multiple images, an initial segmentation, or something else to augment the seemingly

meager information available in a single photograph.

The limited success with spatially-varying blur lies in stark contrast to recent advances

with uniform blur (as caused by camera shake). In the latter case, one can now estimate and reverse

the effects of this kind of blur through a variety of methods with reasonable success, even when the

(spatially-uniform) kernel is of a complex, non-parametric form [20, 21, 25–30]. The difference in

the spatially-varying case is that blur must be inferred locally, using many fewer observations than

are available in a large, uniformly-blurred image. And this means that one must use stronger image

models to be able to extract the required information from a reduced set of measurements, while
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also ensuring that inference is tractable.

This chapter describes a novel cue for analyzing blur locally and reasoning about non-

uniform cases. Starting with a standard sub-band decomposition (a “local” Fourier transform), we

introduce a probability model for unblurred natural images that is simple enough to “play well”

with the decomposition but powerful enough for accurate inference. This gives us a robust and

efficient likelihood measure for a small image window being blurred by a given kernel. This cue is

then applied to the problem of segmenting motion-blurred regions from otherwise sharp images and

simultaneously selecting the blur kernel acting on the affected region. We evaluate this approach

using a diverse collection of images that each contain a single moving object. It yields satisfactory

estimates of the blur kernel in most cases, and is able to obtain useful segmentations when combined

with color information.

2.2 Related work

Inferring the blur kernel from a blurred image requires simultaneously reasoning about

the kernel and the latent sharp image on which it operates. To address the problem, one must define

the family of blur kernels to be considered, as well as an image model which encodes the statistical

properties that distinguish sharp images from their blurred counterparts. Existing methods differ in

terms of the types of blur they consider, the observations they use as input, and whether or not they

allow the kernel to vary spatially.

When the blur is caused by camera shake and is spatially-uniform, one has the good for-

tune of being able to accumulate evidence across the entire image plane, and as a result, one can

afford to consider a very general class of blur kernels. In this context, a variety of recent techniques

have shown that it is possible to recover non-parametric and fairly arbitrary blur kernels, such as

those induced by camera shake, from as little as one image [20, 21, 25–28]. Even in instances of

camera shake when the actual kernel varies spatially, because the camera motion involves rotation
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or out of plane movement, these varying kernels can be related by using a homography to relate

images corresponding to different camera positions and orientations. Since the parameters of this

homography are still global, they can be estimated with reasonable accuracy by pooling cues from

across the image [29, 30]. One general insight that is drawn from these works is that instead of si-

multaneously estimating the blur kernel and a single sharp image that best explain a given input, it is

often preferable to first estimate the blur kernel (say, from its conditional distribution) by marginal-

izing over all consistent sharp images. Levin et al. [21] refer to this process as “MAPk estimation”,

and we will use it here.

Blur caused by motion or defocus usually varies spatially across an image, and in these

cases, one must infer the blur kernels largely using local evidence. To succeed at this task, most

methods consider a more constrained family of blur kernels, and they incorporate more input than

a single image. When two or more images are available, one can exploit the differences between

blur and sensor noise [31] or the required consistency between blur and apparent motion [32–35] or

blur and depth [36, 37]. As an alternative to using two or more images, one can use a single image

but assume that a solution to the foreground/background matting problem is given as input [38–40].

Finally, one may be able to successfully use a single image, but with special capture conditions to

exaggerate the effect of the blur. This is the approach taken in [41], where images captured with

a coded aperture are used (along with additional user input) to estimate defocus blur that varies

spatially as a function of scene depth.

More related to the method presented here is the pioneering effort of Levin [42], who also

considers the case with just a single image, acquired from a regular camera, as input. The idea

is to segment an image into blurred and non-blurred regions and to estimate the PSFs by exploit

differences in the distribution of intensity gradients within the two types of regions. These relatively

simple image statistics allow compelling results in some cases, but they fail dramatically in others.

One of our primary motivations in this chapter will be to understand these failures and develop

stronger computational tools to eliminate them.
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2.3 Observation Model

Let y[n] denote the observed image, with n ∈ R2 indicating the location of a pixel. We

shall consider the case where y[n] is a single-channel linear (i.e. not gamma-corrected) greyscale

image. Let x[n] be the corresponding latent sharp image, i.e. the image that would have been

captured in the absence of any blur or noise. The images x and y can then be related as

y[n] =















∑

n′
x[n′] kn′[n − n′]















+ z[n], (2.1)

where z is sensor noise and kn is the blur kernel acting at pixel location n. Therefore, each pixel

n accumulates light from multiple neighboring pixels n′, weighted based on the corresponding

kernels kn′ acting at those locations. The observation noise z[n] is assumed to be white Gaussian

with variance σ2
z :

z[n]
iid∼ N(0, σ2

z ). (2.2)

Our goal is to estimate the blur kernel kn at every location n. This problem is under-

determined even when the kernel does not change from point to point, and allowing spatial varia-

tion adds considerable complexity. Allowing an arbitrary kernel at every pixel renders estimation

impractical, and we will need to make some simplifying assumptions to proceed. One assumption

we make is that the kernel is constant in local neighborhoods. This turns out to be a reasonable

assumption in most cases, but as we shall see, it limits our ability to obtain localized boundaries

based on blur information alone.

Note that when the blur is uniform and kn = k,∀n, the model in (2.1) reduces to a regular

convolution, i.e.

y[n] = (x ∗ k)[n] + z[n]. (2.3)

This case is naturally analyzed in the frequency domain. The convolution theorem lets us simplify

inference with the Fourier transform by diagonalizing the action of the constant kernel k as

Y(ω) = X(ω)K(ω) + Z(ω), (2.4)
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where ω ∈ [−π, π]2 corresponds to spatial frequency, and Y(ω), X(ω), K(ω) and Z(ω) are Fourier

transforms of x[n], y[n], k[n] and z[n] respectively. However, when the blur kernel varies spatially,

the signals x[n] and y[n] are no longer related by convolution, and a global Fourier transform is of

limited utility.

Instead, we use a localized frequency representation. Let w[n] ∈ {0, 1} be a symmetric

window function with limited spatial support, and { fi} be a set of complex-valued filters defined as

fi[n] = w[n] × e− j〈ωi,n〉, (2.5)

with frequencies ωi ∈ R2. The choice of {ωi}i will depend on the window size, and it is made

to ensure that the filters { fi}i are orthogonal, i.e. 〈 fi, f ∗
j
〉 = 0 for i , j, where f ∗

j
refers to the

complex conjugate of f j. Applying these filters to an image x yields the corresponding responses

xi[n] = (x ∗ fi)[n]. For every location n, the set of coefficients {xi[n]}i can be interpreted as the

Fourier decomposition of a local window centered at that location.

Now, we consider the corresponding local Fourier decomposition of the observed image

y[n]. As stated earlier, we make the assumption that the kernel is constant in local neighborhoods.

As illustrated in Fig. 2.2, we assume that for every location n, the same blur kernel kn acts at every

scene location in x[n] that contributes to any pixel in a window centered at n in the observed image

y[n]. This allows us to combine (2.1) and (2.5) and model the filter responses for the observed

image as

yi[n] = (x ∗ (kn ∗ fi)) [n] + (z ∗ fi)[n]. (2.6)

This is similar to the spatially-uniform case (2.4), but different in a critical way. In this spatially-

varying case, there is no means of expressing the transform coefficients {yi[n]}i in terms of the

corresponding {xi[n]}i alone, because pixels in any window of y have values determined by pixels

outside of that window in x.

However, we can derive a useful expression for the statistics of the observed coefficients,

under specific modeling assumptions. Consider the case where there is no observation noise. In
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Figure 2.2: Modeling images with spatially-varying blur. We use a localized frequency representa-

tion corresponding to Fourier transforms of local image windows (shown with solid red border). For

every window, a constant kernel kn is assumed to act at all locations in the neighborhood (shown

with a dotted border) that affect observed pixels inside that window. There is no deterministic re-

lationship between the corresponding observed and sharp coefficients, since observed coefficients

depend on the larger neighborhood and not just the Fourier window in the sharp image.

the local neighborhood around n where we assume the kernel to be constant, i.e. one equal to the

support of w plus that of kn, let all elements of x be independent and identically distributed as

N(0, σ2). Since each yi[n] is a linear combination of x[n], it is also distributed as a zero-mean

Gaussian, with variance given by

E |yi[n]|2 = E

∣

∣

∣

∣

∣

∣

∣

∑

l

x[n − l]( fi ∗ kn)[l]

∣

∣

∣

∣

∣

∣

∣

2

= σ2
∑

l

|( fi ∗ kn)[l]|2, (2.7)

since the different x[n] are un-correlated. This can be thought of as an analogue to expression in

(2.4), and accordingly we refer to

{

σ2
ki

}

i
=















∑

l

|(k ∗ fi)[l]|2














i

, (2.8)

as the blur spectrum in the remainder of this chapter.

It is worth noting here that while the transform coefficients {xi[n]}i are un-correlated

owing to the filters { fi}i being orthogonal, strictly speaking the corresponding observed coefficients
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{yi[n]}i are not. Specifically for i , j, we have

E yi[n]y∗j[n] = σ2
∑

l

( fi ∗ kn)[l]( f j ∗ kn)∗[l]

= σ2
∑

l

∑

m1

∑

m2

kn[m1]kn[m2] fi[l −m1] f ∗j [l −m2]

= σ2
∑

m1

∑

m2

kn[m1]kn[m2]

















∑

l

fi[l] f ∗j [l − ∆m]

















, (2.9)

where ∆m = m2 −m1. For all terms in the summation above where ∆m = 0, the expression in

parantheses is just the inner product between the filters fi and f j which evaluates to zero. For the

case of ∆m , 0, we have the following expression:

∑

l

fi[l] f ∗j [l − ∆m] =
∑

l

w[l]e− j〈ωi,l〉 w[l − ∆m]e j〈ω j,l−∆m〉

= e− j〈ω j,∆m〉
∑

l

w[l − ∆m] fi[l] f ∗j [l], (2.10)

using the definition of fi from (2.5). Therefore, the expressions for terms with ∆m , 0 differ in

two aspects— there is a phase-shift in the complex exponential which simply shows up as a unit-

magnitude constant outside the summation; and the summation itself is truncated because of the shift

in the window function w[l − ∆m]. Whereas the full summation corresponds to the inner product

〈 fi, f ∗
j
〉 and would have evaluated to zero, the truncation causes the above expression to yield a small

residual value. In practice, we find the cross-correlation values between the coefficients due to this

residual to be negligible, and therefore in the following sections, we treat the observed coefficients

as uncorrelated to simplify inference.

2.4 Inference with Image Prior

We now describe a statistical inference approach for estimating the blur kernels kn from

the observed image y[n], using an appropriate prior model for the latent sharp image x[n]. We

define this prior by modeling the distributions of image gradients. Formally, let x∇[n] = (∇ ∗ x)[n]
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correspond to the gradient map of x for a gradient filter ∇. We will consider different models for

x∇[n], and use them for inference on the gradient map y∇[n] of the observed image y[n].

2.4.1 Gaussian Distribution

We first look at using a Gaussian distribution to model the gradient map x∇[n]. Specifi-

cally, all gradient values in the image are assumed to be independent and identically distributed with

zero mean and a fixed variance s > 0, i.e.

x∇[n]
iid∼ N(0, s). (2.11)

Now consider the local Fourier coefficients {y∇
i

[n]} of the observed gradient map y∇[n]. In the

absence of observation noise, these are given by

y∇i [n] = (y∇ ∗ fi)[n] = (∇ ∗ y ∗ fi)[n] = (∇ ∗ x ∗ kn ∗ fi)[n] = (x∇ ∗ (kn ∗ fi))[n]. (2.12)

We can now use the identity in (2.7) to derive an expression for the likelihood p(kn = k|y∇[n]), of

a candidate kernel k acting on a window centered at location n, as

p(kn = k|y∇[n]) ∝ p({y∇i [n]}i|kn = k) ∝
∏

i

N
(

y∇i [n]|0, sσ2
ki

)

∝














∏

i

σ2
ki















−1/2

exp















− 1

2s

∑

i

|y∇
i

[n]|2

σ2
ki















, (2.13)

where σ2
ki

is the blur spectrum of the candidate kernel k, as per (2.8).

A Gaussian prior has the virtue of simplicity, and the likelihood in (2.13) can be computed

easily in closed form. Moreover, despite the fact that empirical distributions of gradients in natural

images have significantly heavier tails than a Gaussian distribution, the model has been used with

some amount of success for blur estimation in the absence of spatial variation [21]. Unfortunately,

it is far less useful when dealing with spatially-varying blur.

This is illustrated in Fig. 2.3 using a toy one-dimensional “image”. We consider two local

windows, one that contains a low-contrast edge that is not blurred, and another with a high-contrast
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Figure 2.3: Inference with different priors on a toy example. We consider two windows in a 1-D

image (Left), containing a high contrast blurred edge (the dotted line corresponds to the latent sharp

edge) and a low contrast blurred edge. (Center) For each window, we show the ratio between the

likelihoods of it being blurred and sharp, under the Gaussian and GSM priors. For the Gaussian

prior, this ratio is shown as a function of the variance parameter s. A window is classified as blurred

if the log of the ratio is above 0. While the GSM-based likelihood yields the correct classification

for both edges, there is no single value of s for which both windows are classified correctly. (Right)

A comparison of the blur spectra (bottom) corresponding to the blur kernel σki and to no blur σδi,

with the actual observed coefficient magnitudes (top) for the two windows containing the blurred and

sharp edges. We see that while the observed magnitudes match the “shapes” of their corresponding

expected spectra, they are scaled differently based on the contrast of the edges.

edge that is blurred by a box filter k. Our task is to decide, by looking at the observed coefficients

{y∇
i

[n]}i in each local window, whether that window was blurred by k (which is assumed to be

known), or was not blurred at all (i.e. it was blurred by an impulse kernel δ). We shall make this

decision based on the which kernel’s likelihood, as defined in (2.13), is greater.

Figure 2.3 (center) shows the ratio of these likelihoods for different values of the sharp

image model variance parameter s, and we see that the Gaussian-based likelihood measure in (2.13)

is never able to classify both windows correctly. That is, we can choose the model parameter to

correctly classify one or the other, but not both simultaneously. Intuitively, this results from the fact

that even if one can reasonably expect the mean square gradient values of an entire sharp image

to be close to s, the same is not true within different small windows of that sharp image, whose

statistics can change quite dramatically.

To gain further insight, we can look at the local spectra of the input image around the
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two edges, as depicted in Fig. 2.3 (right). We see that while the magnitudes of the spectra match

the shapes of the two blur kernel spectra, their relative scales are very different. The classification

fails, then, because the simple Gaussian-based likelihood model (2.13) involves absolute variance

values, at a scale that is fixed and determined by the choice of our image prior model parameter s.

Viewed another way, the likelihood term is “distracted” by the difference in contrasts between the

two edges, and this prevents it from being able to make a decision based purely on how sharp the

edges are.

2.4.2 Gaussian Scale Mixture

In this section, we introduce an image prior model that specifically seeks to capture edge

sharpness distinct from edge contrast. Instead of fixing the variance parameter s for the entire image,

we let each local neighborhood have its own variance, and treat that variance as a random variable

instead of a model parameter. For every local neighborhood η, we model the gradient values in that

neighborhood as

p
(

{x∇[n]}n∈η
)

=

∫

ps(s)
∏

n∈η
N

(

x∇[n]|0, s
)

ds, (2.14)

where ps(s) is a probability distribution on s. This corresponds to a Gaussian Scale Mixture (GSM)

model [43], where s corresponds to a common scale parameter for the neighborhood η. Conditioned

on this common scale s, the image gradients in any neighborhood η are independent and identically

distributed. Note that the marginal distribution of individual gradients in x∇[n] is more kurtotic

than a Gaussian distribution. For this reason, GSM-based priors have been used previously to model

natural images, for applications in denoising [13] and deconvolution [44].

We want the distribution ps(s) to be such that the overall prior model in (2.14) is agnostic

of edge contrast. Therefore, we use the Jeffreys non-informative prior [45] for Gaussian variance

parameters to model s as

ps(s) ∝ s−1, for s > 0. (2.15)
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Note that this is an improper prior distribution, because it is not integrable. Nevertheless, as we

show next, it yields a well-defined likelihood measure, and one that is not biased by the scale of the

observed gradients.

Setting η to be the neighborhoods in x∇[n] on which each set of the observed local Fourier

transform coefficients {y∇
i

[n]}i depend (i.e. equal to the sum of the supports of the window function

w and candidate blur kernel k), we can derive the likelihood p(kn = k|y∇[n]) under the GSM-based

prior model as

p
(

kn = k
∣

∣

∣y∇[n]
)

∝
∫

1

s

∏

i

N
(

y∇i [n]|0, sσ2
ki

)

ds

∝
∫

s−(F/2+1)















∏

i

σ2
ki















−1/2

exp















− 1

2s

∑

i

|y∇
i

[n]|2

σ2
ki















ds, (2.16)

where F is the total number of frequency bands. Fortunately, this expression also has a closed form

solution, that can be derived by matching the integrand above to the form of the inverse-Gamma

distribution:

γ−1(s|α, β) = β
α

Γ(α)
s−(α+1)e−β/s. (2.17)

Using the fact that integrating the above distribution over s yields one, we have

p
(

kn = k
∣

∣

∣y∇[n]
)

∝














∏

i

σ2
ki















−1/2 













∑

i

|y∇
i

[n]|2

σ2
ki















−F/2

. (2.18)

We can show that the likelihood measure in (2.18) has several desirable properties. Note

that it can be re-written as:

p
(

kn = k
∣

∣

∣y∇[n]
)

∝














∏

i

|y∇i [n]|














−1 [

GM({rki[n]}i)
AM({rki[n]}i)

]F/2

, (2.19)

where,

rki[n] =
|y∇

i
[n]|2

σ2
ki

, (2.20)

are the ratios between the observed and blur spectra, and the GM(·) and AM(·) terms refer to their

geometric and arithmetic means, respectively. Scaling all the rki terms for a particular window by a
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constant will not affect the ratio between the geometric and arithmetic means. Therefore, we have

the following identity:

p
(

kn = β1k1

∣

∣

∣αy∇[n]
)

p
(

kn = β2k2

∣

∣

∣αy∇[n]
) =

p
(

kn = k1

∣

∣

∣y∇[n]
)

p
(

kn = k2

∣

∣

∣y∇[n]
) , (2.21)

for any scalars α, β1 and β2. This implies that for a candidate window, the likelihood ratio between

two candidate kernels is independent of the scale or absolute magnitudes of the kernels and observed

gradients.

Furthermore, we note that the geometric mean of a series is always less than or equal to

the arithmetic mean, with the two being equal only when all elements of the series, in this case the

ratios {rki}i, are the same. Therefore, for a given set of observed coefficients {y∇
i

[n]}i, the likelihood

is maximal when |y∇
i

[n]|2 = α σ2
ki
, ∀i, i.e. the observed spectrum is exactly a scaled version of

the candidate blur spectrum. Because of these properties, the likelihood measure in (2.18) can

be interpreted as matching the shapes of the observed spectrum to those of candidate blur kernels,

independent of their magnitudes. As a result, we see that the GSM-based likelihood is able to ignore

the contrasts of the two edges in our toy 1-D example and, as shown in Fig. 2.3 (center), is able to

classify both correctly.

2.4.3 Inference with Noisy Observations

So far, we have looked at computing blur likelihoods ignoring the effects of observation

noise, i.e. z[n] in (2.1). We now consider the effect of noise on the statistics of the observed gradient

coefficients {y∇
i

[n]}. In the presence of noise, these coefficients are given by

y∇i [n] = ỹ∇i [n] + z∇i [n], (2.22)

where {ỹ∇
i

[n]}i are the corresponding clean coefficients that would have been observed in the ab-

sence of noise, and {z∇
i

[n]}i are the local Fourier coefficients of the gradient map of the noise image

z[n], given by

z∇i [n] = (∇ ∗ z ∗ fi)[n]. (2.23)
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Given the noise model in (2.2), where z[n] is assumed to be independent and identically

distributed as a Gaussian with variance σ2
z in the pixel domain, it follows from the identity in (2.7)

that the expected variance of the noise gradient coefficients {z∇
i

[n]} will be given by the spectrum

σ2
∇i

of the gradient filter ∇ computed as per (2.8), i.e.

E

∣

∣

∣z∇i [n]
∣

∣

∣

2
= σ2

zσ
2
∇i = σ

2
z

∑

n

|(∇ ∗ fi)[n]|2 . (2.24)

Unfortunately, updating the GSM-based prior likelihood to exactly model the effect of

these noise coefficients as

p
(

kn = k
∣

∣

∣y∇[n]
)

∝
∫

ps(s)
∏

i

N
(

y∇i [n]|0, sσ2
ki + σ

2
zσ

2
∇i

)

ds, (2.25)

is problematic. Using the Jeffreys prior from (2.15) no longer yields a finite likelihood measure,

because the integrand above goes to infinity as s approaches zero. Even if ps(s) were to be suitably

modified, there would be no closed form solution and the integration above would have to be done

numerically.

Instead, we take the following approach to approximately account for the effect of ob-

servation noise in our original likelihood measure in (2.18): for every window, we only consider

those observed coefficients whose magnitudes are significantly above the corresponding noise vari-

ances from (2.24), and then compute the likelihood from only these coefficients, treating them as

noise-free. This updated likelihood measure is given by

p
(

kn = k
∣

∣

∣y∇[n]
)

∝
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|y∇
i

[n]|2

σ2
ki



















−|I[n]|/2

, (2.26)

where I[n] corresponds to the active set of coefficients for each window, and is given by

I[n] = { i : |y∇i [n]|2 > T σ2
zσ

2
∇i}, (2.27)

for some scalar T . This choice of I[n] is independent of the candidate kernel k, and the likelihood

measures for different kernels is computed over the same set of coefficients for each window.
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Finally, note that gradient filters are typically high-pass and therefore the values of σ2
∇i

corresponding to the higher frequencies ωi will be large. As a result, the observed coefficients for

these bands will often fail to cross the noise threshold as defined in (2.27). Therefore, to reduce

computational cost, we avoid computing coefficients for bands with high values of σ2
∇i

and apply

only a subset of the filters { fi}i to the observed image.

2.5 Detecting Motion

We now address the task of detecting and segmenting out a moving object from a single

still image. We describe an algorithm that exploits motion blur as a cue for this task, using the

likelihood measure described in the previous section. We assume that there is only one moving

object in the image, and instead of detecting a separate blur kernel for each region in this object,

we assume that the object is moving uniformly and that all regions inside the object are therefore

affected by the same kernel km. This assumption makes the segmentation more robust, and our

estimate of the kernel km provides direct information about the orientation and speed (relative to

exposure time) of the moving object [32–35].

Formally, for a given observed image y[n], every pixel is modeled as either part of the

stationary sharp “background” or the motion-blurred “foreground”. Therefore, we assume that every

kernel kn belongs to the set {k0, km}, where k0 corresponds to the blur kernel acting on the stationary

regions of the image and is chosen to either be an impulse (i.e. no blur at all) or a mild defocus blur;

and km is the motion blur kernel acting on the moving object. Our task is to estimate the motion

kernel km, and to assign a label M[n] to every location, where M[n] = 0 for pixels in stationary

regions, and 1 for pixels in the moving object. We shall interpret this to imply that kn = k0 for

M[n] = 0 and kn = km otherwise, but our assumptions about the blur kernel kn being constant in a

neighborhood clearly do not hold at the borders of this segmentation. Therefore, we will augment

the blur likelihood with a per-pixel color model that will help with inference near these boundaries.
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Figure 2.4: Candidate set of motion kernels. The kernel km acting on the moving object is assumed

to belong to a set of horizontal and vertical box filters of different length. These kernels corre-

spond to the object moving with different uniform velocities in the corresponding direction during

exposure.

2.5.1 Selecting the Kernel

We first address the task of choosing the blur kernel km. It is assumed to be one of a

discrete set of possible candidates, corresponding to horizontal or vertical box filters of different

lengths (see Fig. 2.4). These correspond roughly to horizontal or vertical object motion with fixed

velocity. Formally, for a chosen set of lengths {l1, l2, . . . lL}, we assume that

km ∈ {bhl1 , . . . bhlL , bvl1 , . . . bvlL}, (2.28)

where bhl is a horizontal “box” filter of length l (corresponding to number of pixels the object moved

during exposure), i.e.

bhl[n] =



























1 if ny = 0, 0 ≤ nx < l,

0 otherwise,

(2.29)

and bvl is a similarly defined vertical box filter.

To handle both horizontal and vertical candidate blurs {bhl} and {bvl}, we need to use two

sets of coefficients {yh
i
[n]}i and {yv

i
[n]}i defined as,

yh
i [n] = ( fih ∗ ∇h ∗ y)[n], yv

i [n] = ( fiv ∗ ∇v ∗ y)[n], (2.30)

where ∇h and ∇v are horizontal and vertical gradient filters, and { fih}i and { fiv}i correspond to local

Fourier filters defined as per (2.5), using horizontal and vertical one-dimensional windows.

To select the motion blur kernel km, we need to derive an expression for the global likeli-

hood p(km = b). If b is horizontal, then the coefficients yh
i
[n] at all n should be explained either by
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b or k0, and the coefficients in the orthogonal direction yv
i
[n] should all be explained by k0 (i.e. they

are not affected by the motion blur). The converse is true if b is vertical, and this reasoning leads us

to define

p(km = blh) ∝
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, (2.31)

where the individual per-window likelihood measures are computed as per (2.26). The blur kernel

km can then be chosen amongst the candidate set in (2.28) to maximize this likelihood p(km). Note

that the most expensive part of computing the likelihoods, for each of the candidate kernels, is the

local Fourier decomposition, but this only needs to be done once for each orientation. Once the

coefficients {yh
i
[n]}i and {yv

i
[n]}i have been computed, the kernel km can be selected very efficiently

using the above strategy.

2.5.2 Segmentation

Having chosen the motion kernel km, we now address the problem of assigning the seg-

mentation labels M[n] at every location n. As mentioned above, the blur likelihoods alone are

not sufficient for this task since they are not well-defined at segmentation boundaries, and also in

smooth regions where the most of the observed gradient coefficients are below the noise threshold in

(2.27). Therefore, these likelihoods are combined with a complimentary cue derived from statistical

distributions for object and background pixel colors into a Markov random field (MRF) model, as

used in traditional segmentation [46].

This MRF model will be defined in terms of an energy function that incorporates the blur

likelihoods, color distributions, and a spatial smoothness constraint on M[n] that favors adjacent

pixels having the same label assignments. The blur component Bn[m] of this energy, as a function

of the label m ∈ {0, 1} at that location, is defined simply as the negative log-likelihood of the
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corresponding kernel (i.e. km or k0), i.e.

Bn(m) = −m log p
(

kn = km

∣

∣

∣y∇[n]
)

− (1 − m) log p
(

kn = k0

∣

∣

∣y∇[n]
)

. (2.32)

Next, we define color models for pixels corresponding to the moving object and stationary

background. While the blur model was based on the linear greyscale version of the observed image,

these color models are defined on the gamma-corrected RGB vectors yc[n] ∈ R3. We use a finite

mixture of multivariate Gaussians to model both background and object pixels, where the object

color model is defined as

p

(

yc[n]
∣

∣

∣

∣

θm =
{

γ j,µ j,Σ j

}Jm

j=1

)

=

Jm
∑

j=1

γ jN
(

yc[n]
∣

∣

∣µ j,Σ j

)

. (2.33)

Here, θm correspond to the parameters of this model that also need to be estimated. The back-

ground color model is defined in a similar way in terms of the corresponding parameters θ0 =

{

γ j,µj ,Σ j

}J0

j=1
. The color component Cn(m) of the MRF energy is then defined as

Cn(m) = −m log p
(

yc[n] |θm

) − (1 − m) log p
(

yc[n] |θ0

)

. (2.34)

The labels M[n] ∈ {0, 1} are chosen as the solution to the following energy minimization

problem:

M[n] = arg min
M

(

min
θm,θ0

E (M[n],θm,θ0)

)

, (2.35)

where the energy function E(·) is defined as

E (M[n],θm,θ0) =
∑

n

Bn (M[n]) + λ
∑

n

Cn (M[n]) +
ρ

2

∑

(n,n′)∈P

∣

∣

∣M[n] − M[n′]
∣

∣

∣ . (2.36)

The first two terms in this energy function favor label assignments that match the likelihood mea-

sures under the blur and color models, with the scalar parameter λ controlling the relative contribu-

tion of the two. The third term enforces a smoothness constraint amongst all pairs P of neighboring

locations, by adding a penalty of ρ every time a pair is assigned different labels.
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Note that the minimization in (2.35) has to be done over both the labels M[n] as well

as the color model parameters θm and θ0. For a fixed value of the color parameters, the optimal

assignments for M[n] can be computed exactly using graph cuts [47] to best satisfy the smoothness

constraints. Therefore, we propose the following iterative algorithm to carry out the overall mini-

mization: we initialize the iterations by setting the label assignments M[n] using graph cuts, based

only on the blur and smoothness terms in (2.36) which do not involve the color parameters. At

each subsequent iteration, we set the color parameters θm and θ0 to minimize the energy function

keeping the current estimates of the label assignments M[n] fixed. This corresponds to fitting the

color parameters so as to maximize the log-likelihoods of the sets of object and foreground labeled

pixels under their respective distributions (as defined in (2.33)), and we do this using the Expecta-

tion Maximization (EM) algorithm [48]. The labels M[n] are then recomputed using these values

of the color model parameters. Note that both these steps reduce the value of the energy function in

(2.36), and we iterate till the label assignments M[n] converge.

2.6 Experimental Results

We now evaluate the algorithm on a database of images of real-world scenes, captured

using three consumer cameras: a digital SLR, a point-and-shoot and a cell-phone. Each image

contains a single motion-blurred object, and we evaluating the proposed method’s ability to latch on

to the motion blur present in the image, which includes choosing the correct approximate orientation

and length for the blur kernel, to yield a useful segmentation. This image database and a MATLAB

implementation of the algorithm are available for download [22].

2.6.1 Implementation Details

Both the horizontal and vertical sub-band transforms were defined in terms of windows

of length W = 61. The filters { fih} and { fiv} were then generated with ωi equal to the corresponding
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set of frequencies 2πu/W, u ∈ {1, . . . 15}, i.e. we only used the lower half set of frequencies which

had acceptable levels of noise variance in the gradient domain. The gradient filters ∇ were defined

simply as [−1, 1] (in the appropriate direction), i.e. the gradient values corresponded to the finite

differences between neighboring pixels.

For the blur length, we searched over the discrete set of integers from 4 to 15 pixels.

Larger lengths can be handled by downsampling the image to an appropriate resolution. For seg-

mentation, the object and foreground RGB color vectors were modeled as mixtures of 4 and 6

Gaussians respectively. The choices for all parameters (including σ2
z , γ and ρ) were kept fixed for

all images.

The JPEG images generated by the cameras were gamma-corrected, and therefore the

input image had to be linearized for use with the blur model. Since the exact tone maps applied

by the cameras were unknown, we assumed standard sRGB gamma-correction and computed the

linear images by raising all intensities to the power (1/2.2). Note that this is only an approximation,

and better results are likely when using a calibrated camera.

2.6.2 Results

Figure 2.5 shows the full segmentation results for all images in the database. This in-

cludes a visualization of the blur and color components of the energy Bn and Cn, along with the

corresponding detected motion blur kernel km, and estimated color model parameters θm and θ0. We

then display the combination of these two energy components, and the final labels M[n] computed

using graph cuts.

We find that the algorithm does well on this diverse set of real world images, despite

approximate assumptions about noise variance, gamma correction, uniform object motion, etc. It is

also able to detect the blurred regions even in cases of relatively minor motion (such as for images

6 and 11), and is fairly robust even in cluttered backgrounds (such as image 3). The detected kernel

km are also found to approximately correlate to the direction and speed of apparent motion of these
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Input Image 1 Bn: km = Horiz., 6 pixels Cn: Moving object:

Background:

Bn + λ Cn Segmented Object: M[n] = 1 Background: M[n] = 0

Input Image 2 Bn: km = Horiz., 6 pixels Cn: Moving object:

Background:

Bn + λ Cn Segmented Object: M[n] = 1 Background: M[n] = 0

Input Image 3 Bn: km = Horiz., 7 pixels Cn: Moving object:

Background:

Bn + λ Cn Segmented Object: M[n] = 1 Background: M[n] = 0

Figure 2.5: Segmentation results on various image. For each input image, we show the blur and

color energy components Bn and Cn, where the intensity corresponds to the absolute difference

between the energies for the two labels, with blue regions indicating that the m = 0 label (i.e. for

the stationary background) is preferred, and green m = 1. Red corresponds to invalid or unavailable

data. Then, we show the combined energy, and the final segmentation M[n]. The chosen motion

kernel km, and estimated mean color parameters {µ j} j for the color models are also indicated.
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Input Image 4 Bn: km = Horiz., 4 pixels Cn: Moving object:

Background:

Bn + λ Cn Segmented Object: M[n] = 1 Background: M[n] = 0

Input Image 5 Bn: km = Horiz., 4 pixels Cn: Moving object:

Background:

Bn + λ Cn Segmented Object: M[n] = 1 Background: M[n] = 0

Figure 2.5: (continued)
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Input Image 6 Bn: km = Horiz., 4 pixels Cn: Moving object:

Background:

Bn + λ Cn Segmented Object: M[n] = 1 Background: M[n] = 0

Input Image 7 Bn: km = Horiz., 15 pixels Cn: Moving object:

Background:

Bn + λ Cn Segmented Object: M[n] = 1 Background: M[n] = 0

Figure 2.5: (continued)
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Input Image 8 Bn: km = Horiz., 11 pixels Cn: Moving object:

Background:

Bn + λ Cn Segmented Object: M[n] = 1 Background: M[n] = 0

Input Image 9 Bn: km = Vert., 7 pixels Cn: Moving object:

Background:

Bn + λ Cn Segmented Object: M[n] = 1 Background: M[n] = 0

Input Image 10 Bn: km = Vert., 7 pixels Cn: Moving object:

Background:

Bn + λ Cn Segmented Object: M[n] = 1 Background: M[n] = 0

Figure 2.5: (continued)
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Input Image 11 Bn: km = Horiz., 4 pixels Cn: Moving object:

Background:

Bn + λ Cn Segmented Object: M[n] = 1 Background: M[n] = 0

Figure 2.5: (continued)

objects.

These results also demonstrate the complimentary nature of the blur and color cues. We

show that the blur map Bn typically has poor localization, with a region of confusion around the

boundaries equal to the window length W. While the color map Cn has much better localization,

since it is based on individual pixel colors, it is unable to differentiate between static and moving

regions with similar appearances— for instance, the two swings in image 1. But considered jointly,

these cues are able to overcome their individual drawbacks to yield an acceptable segmentation of

the moving object.

It is important to note the limitations of this approach. The color cue’s localization near

the boundaries, though better than that of the blur cue, is not perfect. This is because the pixels

in that region are weighted sums of the moving object and background, and will not be perfect fits

39



Chapter 2: Estimating Blur

to either of the object or background color models. The uniform motion assumption can also be

limiting in cases of complex non-rigid motion, such as in images 3, 4, 5 and 9, where both the

true motion speed and orientation change across the object. Finally, the blue cue is prone to mis-

classification in cases when there are stationary image regions that in fact appear blurred based on

the local gradient information, due to soft shadows for example, as is the case for the background

object in image 3. But note that these classification errors occur only when the region in question

matches the gradient statistics that specifically correspond to the selected kernel km, rather than for

every region that is a poor fit to our model for sharp edges.

2.7 Discussion

In this chapter, we described a statistical approach to analyze the spatially-varying pa-

rameters of motion blur that acts on an image. This method involved the use of a local Fourier

decomposition which gave us direct access to the effect of blur on image gradient statistics. This

was combined with an image model that was able to differentiate between sharp and blurred edges,

without being adversely affected by the natural variation in edge contrast that occurs in a typical

image. Equipped with this model and representation, we derived a closed form expression for the

likelihood of a local image window being blurred by a candidate kernel.

We used this likelihood measure to segment out moving objects from an image based on

motion blur, and as a part of this segmentation, also estimated the direction and “speed” of motion.

Since the blur model was based on image windows that were assumed to be blurred with a uniform

kernel, we augmented it with a color-based appearance model to yield better localizations at object

boundaries. We described a segmentation algorithm that combined cues from both the blur and

color models, and evaluated it on a database of diverse real images captured using consumer-level

cameras.

Future research should look at improving the quality of segmentations further, especially
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at the boundaries, by reasoning about both the blur and color models in these regions. This reasoning

may have to take the relative depth of the moving object into account, for example, to consider

different types of occlusion scenarios. The blur model could also be made more robust by a pre-

processing step that distinguishes between material boundaries, that are expected to be sharp, and

smooth gradients from shading effects that are poor fits to our current model, as we saw with soft

shadows in the experimental results. This processing step may require color information to be

directly used in the blur model itself.

Local Fourier decompositions with changing window sizes should also be considered

for the blur model, to optimally trade off localization and discriminability between blur kernels.

For instance, if the motion kernel km is found to be small, a smaller window can be used for the

segmentation part of the algorithm than the one used to select the kernel. Approaches to combine

different window sizes during segmentation should also be considered, with smaller windows near

boundaries and larger ones in the interior of objects likely to yield better results than a uniform

window size.

More broadly, the underlying blur model can be deployed for other vision tasks that in-

volve spatially-varying blur. For example, for defocus blur where the kernel changes with scene

depth, one can imagine using the framework in [41] but doing away with the requirement for spe-

cial capture conditions by using the proposed likelihood measure in (2.18) instead of cues from a

coded aperture. Other applications with motion blur are also worth considering. For instance, in-

stead of assuming uniform rigid motion, one could make local estimates of the blur kernel (possibly

using a weak smoothness constraint) to yield a single image counterpart to optical flow [49]. These

estimates, possibly combined with other cues, could allow the analysis of both object and camera

motion that is more complex than the case considered here.

The blur model in this chapter was based purely on the texture content of sharp images,

i.e. greyscale gradient information, since the action of blur (aside for cases of chromatic aberration)

is independent of color. In the next chapter, we address the problem of estimating the color of the
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illuminant in a scene. The nature of this task makes color a core cue during inference, and therefore

we will introduce an appropriate model that jointly encodes the color and texture statistics of natural

images.
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3
Color Constancy

“The red brick wall was the color of a brick-red Crayola.”

— Douglas Adams

In this chapter, we tackle the problem of color constancy— correcting the colors of an

observed image to remove the cast caused by the spectral distribution of the scene illuminant. This

is an ill-posed problem since both the illuminant spectrum and scene reflectances are unknown.

Therefore, we develop a statistical model for colors in canonical white-balanced images (i.e. those

that have no color cast), and use this model to infer the most likely illumination parameters in an

observed image. We find that by applying spatial band-pass filters to color images, one unveils color

distributions that are well-represented by a simple parametric form. Once these distributions are fit

to training data, they enable efficient maximum likelihood estimation of the dominant illuminant

in a new image. We show that this estimation method can be easily extended to leverage prior

information about illuminant statistics. Finally, experimental results on a standard image database

are used to verify the accuracy of these estimates.
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Figure 3.1: The observed colors in a scene depend on the spectrum of the illuminant. To estimate

a stable color descriptor that is independent of illumination conditions, one seeks to correct for the

“color cast” corresponding to the unknown illuminant. This process is known as color constancy.

3.1 Introduction

In addition to its intrinsic reflectance properties, the observed color of a material depends

on the spectral and spatial distributions of its surrounding illumination. The same object can there-

fore have different recorded color values in different environments (see Fig. 3.1). In order to use

color as a reliable cue in applications such as recognition, we must somehow compensate for these

extrinsic factors and infer a color descriptor that is stable despite changes in lighting. The ability to

make this inference, termed color constancy, is exhibited by the human visual system to a certain

degree, and there are clear benefits to building it into machines.

One important part of computational color constancy, and the part we consider here, is

compensating for the “color cast” that affects the image as a whole. For this, one ignores spatial

variations in lighting spectra (as might be caused by multiple light sources), and makes the as-

sumption that the spectrum of the illuminant is approximately uniform throughout the scene. The

problem is then one of inferring the inverse map M−1 : R3 → R3 from the space of observed tris-

timulus vectors (RGB, human cone, etc.) to the space of canonical colors, i.e. those that would have

been obtained for the same scene by a standard observer under a standard illuminant. This version

of the color constancy problem is ill-posed since there exist multiple pairs of illuminant spectrum

and scene reflectances that serve as equally valid solutions for any observed image. To resolve this
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ambiguity, we require a prior model for the set of canonical scene colors, and optionally one for

illuminants as well. The color cast (i.e. the map M ) can then be uniquely determined by choosing

the solution that is the most likely under the prior.

Traditional approaches to this problem use models based on statistics of per-pixel colors.

The principal challenge they face is in defining statistics that are informative and reliable, while

allowing tractable inference. Methods such as grey-world [50] and white-patch [51] use simple

first-order statistics— the mean and brightest scene color respectively. While these algorithms have

the benefit of speed, they are susceptible to outliers and dominant colors in a scene and can fail quite

dramatically. On the other hand, using sophisticated models for per-pixel scene colors, such as the

shape of their convex hull in color space [52] or a non-parametric representation of their empiri-

cal probability distribution [53–55], lead to improvements in performance but involve significant

computational cost during estimation.

We introduce a model that goes beyond statistics of per-pixel colors and leverages the

joint spatio-spectral structure that is found to exist in natural images. Motivated by the success of

filter-based methods [56, 57], we begin by decomposing an input color image into distinct spatial

sub-bands and then define an image prior in terms of separate models for the color statistics of each

sub-band. Unlike per-pixel colors, we find that the empirical probability distributions of the colors

in each sub-band can be accurately represented using simple parametric forms. Furthermore, they

allow robust and efficient inference of illumination color cast for an observed image. The resulting

method outperforms existing approaches on a standard database, and allows incorporating a prior

model for illuminants in a statistical framework.

3.2 Problem Formulation

Assuming a Lambertian model, we denote the effective spectral reflectance of a surface

patch observed at pixel n ∈ Z2 by κ(λ,n) ∈ R, where λ ∈ R denotes wavelength. Here, κ accounts
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Figure 3.2: Camera measurements under different illuminants. The effective surface reflectance (κ)

gets shaped by the spectrum (ℓ) of the scene illuminant. Different illuminants can lead to signif-

icantly different radiance spectra (κ × ℓ) being incident on the camera, in turn leading to different

trichromatic measurements by the camera’s sensors (π).

for both the material reflectance and surface orientation with respect to the illuminant. We assume

a single dominant scene illuminant and represent its spectral distribution by ℓ(λ). As depicted in

Fig. 3.2, the spectral power distribution (SPD) of the radiance that is emitted toward the observer is

then the product of ℓ and κ.

The three spectral measurements recorded by a camera at each pixel n (assuming ideal

demosaicking [15, 58]) are then given by

y[n] =
[

y{1}[n], y{2}[n], y{3}[n]
]T
=

∫

π(λ) κ(λ,n) ℓ(λ) dλ, (3.1)

where π(λ) = [π{1}(λ), π{2}(λ), π{3}(λ)]T are the spectral transmittance distributions of the camera’s

color filters. From image y[n] our task is to estimate an illuminant-invariant representation, or

“canonical color” image, x[n] given by

x[n] =

∫

π(λ) ℓ0(λ) κ(λ,n) dλ. (3.2)

We refer to ℓ0 as the “canonical illuminant”, and for the specific choice ℓ0(λ) = 1, each canonical

color x[n] can be interpreted as the trichromatic projection (via π) of the effective reflectance

κ(λ,n) at the corresponding surface point.
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Note that the colors y and x in (3.1) and (3.2) are trichromatic reductions of the full

SPD that cannot be exactly reversed, even when the illuminant ℓ and ℓ0 are known. However, prior

work [59–61] suggests that a linear mapping of the form

x[n] =M−1 y[n], M ∈ R3×3 (3.3)

can achieve accurate chromatic adaptation in many cases, and that it can often be approximated fur-

ther as a diagonal transformation (i.e., Mi j = 0, if i , j). We apply such diagonal mappings directly

in the color space defined by π, even though applying them in an optimized (often called “sharp-

ened”) color space can improve performance [59–61]. For this reason, our results may provide a

conservative estimate of what can be achieved by our algorithm. With some abuse of notation, we

let M represent a diagonal matrix in the subsequent sections and refer to its recovery as “estimating

the illuminant”.

3.3 Related Work

Having settled on a linear diagonal form for the mapping from input color y to canonical

color x, the color constancy problem reduces to the task of estimating the three diagonal entries

of M . Since both the illuminant and scene reflectances are unknown, this is an under-determined

problem. Prior work in this area typically addresses this by introducing a statistical prior model

for surface reflectance κ or canonical color x. White-patch [51] and grey-world [50] are two well-

known methods with intuitive interpretations. Based on the observation that color-neutral or achro-

matic surfaces (i.e. those with constant spectral reflectance) are the most efficient reflectors, the

white-patch [51] algorithm posits that pixels observed to have the greatest intensity correspond to

a color-neutral surface patch. Similarly, based on the assertion that the mean surface reflectance in

a scene is likely to be color-neutral, the grey-world [50] method assumes that the sample mean of

canonical pixel colors is achromatic. The diagonal elements of M are then estimated as those that

map the corresponding vector y[nbrightest] or avg(y[n]) to white.
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Other approaches perform more sophisticated analysis of pixel color distributions. The

gamut-mapping [52] method defines constraints on the set of canonical scene colors {x[n]}n in

terms of their convex hull, or “gamut”. Given an input image y, this approach estimates the illu-

minant M as that which maps the convex hull of {y[n]}n to this expected gamut. Finlayson et

al. [62] use a “di-chromatic” model to reason that, due to varying degrees of specular reflection,

the observed colors of each homogeneous surface in a scene will lie along a line in chromaticity

space (defined as the R and G components of a normalized RGB vector). While colors for different

surfaces correspond to different lines, the extended lines all intersect at a common point corre-

sponding to perfect specular reflection for each surface. This intersection point corresponds to the

chromaticity of the illuminant and can be used to set M , along with additional constraints based on

knowledge of natural illuminant chromaticities.

Another alternative is to develop a complete prior probability distribution over canonical

color images that permits, along with a prior distribution over illuminant spectra, the Bayesian es-

timation of M . To make this Bayesian approach tractable, pixels are assumed to be independent

and identically distributed with a probability density that is either Gaussian [53], or more gener-

ally, non-parametric [54, 55]. Related to these are a number of leaning-based approaches that use

databases of canonical color images to learn linear filters [63] or train neural networks [64] that can

then be used to infer illuminant M for a novel input image.

All of the above methods can be considered “pixel-based” because they model the set of

individual pixel colors without considering each pixel’s spatial context. One can arbitrarily re-order

the pixels of any input image, for example, without affecting the resulting estimate of illuminant M .

Because they ignore spatial structure, these methods can be negatively influenced by the presence

of large colorful objects or regions that skew the color histogram. A variety of work suggests that

improvements might be gained by employing spatial image features, such as segmentations or linear

filter responses, that incorporate spatial information in a tractable manner. For example, Gershon et

al. [65] assume that the average of mean colors of segmented regions of an image, rather than of
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individual pixels, is color neutral. Alternatively, van de Weijer et al. [56] and Gijsenij et al. [57]

respectively apply the grey-world and gamut-mapping procedures described above to the outputs of

linear filters instead of the individual pixels they were originally designed for. The grey-edge [56]

method posits that image gradients are on average color neutral, while the generalized-gamut [57]

algorithm proposes strategies for combining cues from the expected gamuts of various linear filter

coefficients. Finally, Singh et al. [66] reason about the illuminant using a linear spatio-spectral basis

for small spatial patches of color images.

We propose an algorithm that seeks to leverage joint spatial and spectral structure in a

more efficient and reliable manner. We achieve this by representing the prior probability distribution

over canonical color images in terms of the color coefficients in distinct spatial sub-bands. We

empirically show that, unlike per-pixel colors, these sub-band coefficients have kurtotic distributions

that can be well-represented using convenient parametric forms, and that these parametric forms can

be used in a maximum-likelihood framework to estimate the illuminant M efficiently.

3.4 Spatio-Spectral Modeling

As stated above, we draw inspiration from previous studies [56, 57, 66] and move beyond

statistics of individual pixels colors to exploit information about a pixel’s spatial context. We take

an approach similar to the grey-edge [56] and generalized-gamut [57] methods, by looking at the

properties of filter coefficients instead of individual pixels. These methods represent important first

steps in looking beyond individual pixels and demonstrate that filter coefficients provide more robust

cues for color constancy. However, they are based on the direct application of pixel-based color

constancy techniques, grey-world [50] and gamut-mapping [52] respectively, to filter coefficients.

Therefore, there is reason to believe that a new estimation procedure specifically tailored to the

statistical behavior of these coefficients can improve performance.

We begin with the observation that statistics of filter coefficients show far more structure

49



Chapter 3: Color Constancy

Figure 3.3: Distributions of individual pixels vs. filter coefficients. Shown are empirical log-

histograms of the red values of individual pixels (Left) and coefficients (Right) of a sub-band

filter (Inset). The coefficient histogram shows more structure and can be modeled by parametric

distributions.

than those of individual pixels. Figure 3.3 compares the empirical histograms of red values of

individual pixels to those of coefficients for a particular band-pass filter, in images under a canonical

illuminant. We note that the histogram for the filter coefficients is uni-modal and symmetric, while

individual pixels show less discernible statistical structure. This lack of structure provides insight

in to the limitations that pixel-based color constancy methods face in terms of building reliable and

tractable models. In contrast, sub-band filter coefficients have distributions that can be described

accurately by parametric models. In this section, we propose such a model and describe a training

algorithm to learn its parameters from data. Subsequent sections present methods that use this model

to estimate the unknown illuminant from an observed image.

3.4.1 Image Model

We begin by defining a statistical model for an image x[n] observed under canonical illu-

mination. Since pixels in a spatial neighborhood are strongly correlated, we first apply a spatially-

decorrelating transform by filtering the image with a series of spatial sub-band filters { fk}k. While

these filters can be chosen to correspond to any standard image decomposition (such as wavelets or

steerable pyramids), Gaussian derivative filters have proved successful in edge-based color con-

stancy methods [56, 57]. Therefore, we use a decomposition based on horizontal and vertical

second-derivative Gaussian filters at multiple scales as illustrated in Fig. 3.4. Each filter is ap-
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Figure 3.4: Sub-band Decomposition. We use horizontal and vertical second-derivative Gaussian

filters at multiple scales to spatially decorrelate the image, and model corresponding coefficients

independently.

plied separately to all channels of the image, and we define the trichromatic color coefficient vector

xk[n] as

xk[n] =
[

(x{1} ∗ fk)[n], (x{2} ∗ fk)[n], (x{3} ∗ fk)[n]
]T
, (3.4)

where ∗ denotes convolution. We assume that following decomposition by the filter bank { fk}, each

sub-band canonical color image xk[n] can be modeled as being independent from the rest.

We represent the prior probability of each sub-band canonical color image as the product

of independent and identical distributions per trichromatic coefficient,
∏

n p (xk[n]), and for the

coefficient distributions we use the “radial exponential” [67]:

p(xk) =
1

π
√

det(Σk)
exp

(

−2

√

xT
k
Σ
−1
k
xk

)

, (3.5)

where Σk is a 3× 3 positive-definite matrix corresponding to the covariance of xk. Note that p(xk),

as defined in (3.5), is more kurtotic, or heavy-tailed, than a multi-variate Gaussian distribution, and

can be thought of as a generalization of the Laplace distribution to the multi-variate case.

It differs, however, from the standard multi-variate Laplace distribution [68] in that the

multi-variate Laplace has equiprobable contours that are L1-spherical or “diamond” shaped (see

Fig. 3.5 (left)) while those of the radial exponential distribution are ellipsoidal (see Fig. 3.5 (center)).

This implies that the components of xk along the eigen-vectors of Σk are un-correlated but not
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Figure 3.5: Equiprobable contours of the distribution of filter coefficient vectors xk[n], correspond-

ing to the filter shown in Fig. 3.3. Contours are shown along the two major eigen-vectors of the

covariance matrix Σk, for a multi-variate Laplace distribution (Left), a radial exponential distri-

bution (Center), and the empirical distribution computed using kernel density estimation (Right).

The empirical distribution has elliptical contours, making the radial exponential distribution a more

appropriate choice for modeling these coefficients.

independent under (3.5). Figure 3.5 (right) shows the equiprobable contours of the actual empirical

distribution of xk computed using kernel density estimation, and we see that these contours are

indeed ellipsoidal indicating that the choice of the “radial exponential” distribution for p(xk) in

(3.5) is appropriate.

3.4.2 Learning Model Parameters

Having defined a parametric statistical model for colors in a canonical image, p(x) =

∏

k

∏

n p (xk[n]), we now require the ability to fit the model parameters Σk given a training set

of canonical images. We treat each sub-band separately during this training step, so the problem

amounts to inferring the entries of a 3 × 3 matrix Σk given the correspond sub-band coefficients in

the training set, {xk,t}Tt=1
. Although, Σk corresponds to the covariance matrix of xk, the maximum

likelihood (ML) estimate of Σk is not the empirical covariance of {xk,t}. The log-likelihood of the

training set coefficients as a function of Σk is

Jk(Σ) =
∑

t

log p
(

xk,t|Σ
)

= −T

2
log det(Σ) −

∑

t

2

√

xT
k,t
Σ−1xk,t. (3.6)

The ML estimate of Σk is therefore given by

Σk = arg max Jk(Σ). (3.7)
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Unfortunately, this does not have a closed-form solution and we therefore propose an iterative pro-

cedure to compute Σk.

We begin the iterations by initializing Σk to the identity matrix. Then at each iteration,

based on the current estimate Σ
∗
k

of Σk, we define an approximation to Jk(·) as

J∗k (Σ|Σ∗k) = −T

2
log det(Σ) −

∑

t

2
xT

k,t
Σ
−1xk,t

√

xT
k,t
Σ
∗
k
−1xk,t

. (3.8)

Accordingly, we update Σk in the following iteration as

Σk = arg max
Σ

J∗k (Σ|Σ∗k) =
4

T

∑

t

xk,tx
T
k,t

√

xT
k,t
Σ
∗
k
−1xk,t

. (3.9)

Note that true ML estimate is a fixed point of these iterations, and in practice, we find that the

procedure converges quickly (usually in less than five iterations).

3.5 Maximum-Likelihood Illuminant Estimation

Once we have learned the parameters of the prior model, we are ready to infer the illumi-

nant M for an input color image y[n]. As per our model in (3.3), we assume that y[n] =Mx[n],

where M is a diagonal 3 × 3 matrix with positive entries. Since convolution is a linear operation, it

follows that yk[n] =Mxk[n], where yk[n] are the color sub-band coefficients of y[n] for filter fk

as in (3.4).

We begin by noting that under our prior model for xk, the likelihood of yk conditioned on

the illuminant M is given by

p(yk|M ) =
1

π
√

det(MΣkM )
exp

(

−2

√

yT
k

(MΣkM )−1yk

)

∝ 1

det(M )
exp

(

−2

√

yT
k

(MΣkM )−1yk

)

. (3.10)

Therefore, the observed coefficients yk[n] also have a radial exponential distribution, with the co-

variance matrix MΣkM . Figure 3.6 compares the covariance matrices Σk and MΣkM for a
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Figure 3.6: Covariance matrices Σk and MΣkM , for coefficients observed under a canonical illu-

mination and a typical illuminant M . (Left) Ellipsoids corresponding to the covariance matrices,

and (Right) their projections onto the R-B and G-B planes. The illuminant causes a skew in the

shape of the covariance matrix, which serves as a cue for our estimation method.

typical illuminant M . This difference between the kth sub-band coefficient distributions for the

input image yk and the canonical color image xk, as embodied by these covariance matrices, is the

fundamental cue that we will exploit for illuminant estimation.

For notational convenience, we define m = [m1,m2,m3] and w = [w1,w2,w3] to be the

diagonal elements of M and M−1 respectively, where mi = w−1
i

. Note the following identities for

any y ∈ R3 and S ∈ R3×3:

M−1y = w diag(y), diag(y) S diag(y) =
(

yyT
)

◦ S, (3.11)

where diag(y) ∈ R3×3 refers to a diagonal matrix whose entries correspond to y, and A◦B denotes

the Hadamard or “entry-wise” product of matrices A and B. Therefore, the ML estimate of M ,

conditioned on all observed coefficients {yk[n]}k,n, is given by

M̂ML = arg max
M∈diag(R3)

∑

k,n

log p (yk[n]|M )

= arg min
∑

k,n

[

log det(M ) + 2

√

yT
k

[n](MΣkM )−1yk[n]

]

= arg min N log m1m2m3 +
∑

k,n

2

√

wT
[

(yk[n]yT
k

[n]) ◦Σ−1
k

]

w, (3.12)

where N =
∑

k,n 1 is the total number of coefficients across all bands. Once we have solved for the

ML estimate M̂ML above, the canonical image x[n] can be computed simply as x[n] = M̂−1
ML

y[n].
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We propose an iterative algorithm to solve (3.12) using a similar approach as the training

method in Sec. 3.4.2. We begin by initializing M to the identity. Based on the estimate M ∗ of the

illuminant at every iteration, we approximate the cost function in (3.12) as

L(M |M ∗) = N log m1m2m3 +
∑

k,n

2
wT

[

(yk[n]yT
k

[n]) ◦Σ−1
k

]

w
√

yT
k

[n](M ∗ΣkM ∗)−1yT
k

[n]

= N

[

log m1m2m3 +
1

2
wTA∗w

]

, (3.13)

where A∗ is a 3 × 3 symmetric matrix given by

A∗ =
4

N

∑

k

























∑

n

yk[n]yT
k

[n]
√

yT
k

[n](M ∗ΣkM ∗)−1yT
k

[n]

























◦Σ−1
k . (3.14)

In the next iteration, the illuminant estimate M is set as

M = arg min L(M |M ∗). (3.15)

This minimization must also be done iteratively. There is a closed-form solution to this expression

for each element of mi of m when the others elements m j,i are fixed. This is given by

∂

∂mi

L(M |M ∗) = 0⇒ m2
i −



















∑

j,i

A∗
ji

m j
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+ 4A∗
ii

























. (3.16)

We apply (3.16) iteratively on each channel i, keeping the others fixed. Once we have converged to

a solution for (3.15) through these “inner” iterations, we update the approximate cost as per (3.13).

3.6 Illuminant Prior

Implicit in the maximal likelihood estimation described in the previous section is the

notion that all illuminants are equally likely. In this section, drawing inspiration from existing color

constancy algorithms [53, 55] that try to leverage a-priori knowledge of illuminant statistics, we
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develop a strategy to incorporate an illuminant prior in to the estimation process. We choose an

illuminant prior distribution p(M ) of the form

p(M ) =

(

2

π

)3/2
1

(m1m2m3)2
√

det(Q)
exp

(

−1

2
wTQ−1w

)

, (3.17)

where Q is a 3×3 positive-definite matrix, and m,w > 0 are equal to the diagonal entries of M and

M−1 as before. Note that this corresponds to a multivariate Gaussian distribution on w (restricted

to positive values), and is a conjugate prior to the likelihood expression in (3.12).

We can use our prior model to describe the statistics of scene illuminants in general,

or those restricted to a category of illuminants (such as indoor v.s. outdoor) that the input image

y[n] is known to belong to. Ideally, the covariance parameter Q would be computed as a sample

covariance of a training set {wt} of illuminant coefficients. However, only the relative spectral

radiance of illuminants is usually available, meaning the absolute luminance of the illuminants in the

training set is unknown. Therefore, we compute the sample covariance Q′ over the set of illuminant

vectors normalized such that ‖mt‖ = 1 during training. During estimation, we first compute the ML

estimate M̂ML of (3.12) without the illuminant prior, and then reweight Q′ covariance parameter as

Q = ‖mML‖2Q′. (3.18)

This reweighting has the effect of normalizing all elements of the training set {mt} to have the same

norm as the initial estimate ‖mML‖.

Let yk[n] be the kth sub-band coefficients of input image as before. The final illuminant

estimate incorporating p(M ) is obtained by solving

M̂ = arg max

















∑

k,n

log p(yk[n]|M )

















+ α log p(M ). (3.19)

Here, α is a scalar parameter that weights the relative contribution of the prior to the image evidence,

and is learned using cross-validation to minimize estimation error on a training set. While for

the special case of α = 1, the above formulation corresponds to maximum a-posteriori (MAP)

estimation, we find that a larger weight on the prior yields better estimates in practice.
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We solve the minimization problem in (3.19) using an approach similar to that for (3.16).

We define an approximated cost as

Lp(M |M ∗) = (N + 2α)

[

log m1m2m3 +
1

2
wTA∗pw

]

, (3.20)

where A∗p is a 3 × 3 matrix given by

A∗p =
NA∗ + αQ

N + 2α
, (3.21)

with A∗ defined as per (3.14). Applying (3.16) iteratively to A∗p (instead of A∗ as was done in

the previous section) solves M = arg min Lp(M |M ∗). If M ∗ is set to MML, we find that further

iterations to update Lp or Q are unnecessary.

3.7 Experimental Evaluation

We evaluate the proposed method on the 568 color images collected by Gehler et al. [55],

of which 246 were labeled as captured indoors, and 322 as captured outdoors. Each image has a

color checker chart at manually marked co-ordinates which serves as ground truth, and is masked

out during evaluation. We use the version of the database made available by Shi and Funt [69]. It

consists of 12-bit linear images in the sensor color space generated directly from the RAW captured

data — without using the camera’s auto-white balance, gamma-correction or any demosaicking (the

sensor data is sub-sampled to provide a trichromatic vector at each pixel). While the rest of this

section describes performance on this database, we also include results for another other common

databases in the appendix.

A recent survey [70] provides comprehensive evaluation of a large number of color con-

stancy methods on this database, allowing us to conveniently compare them to the proposed al-

gorithm. Performance is measured in terms of the angular deviation between the estimated and

true illuminant, where the later is computed from the brightest grey patch in the color chart. Us-

ing the same error metric and ground truth, we compare the proposed method to the state of the
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art: grey-world [50], grey-edge [56], gamut-mapping [52], generalized-gamut mapping [57] and

Rosenberg [54, 55].

3.7.1 Implementation Details

We implement the proposed method with second-derivative Gaussian filters at three dif-

ferent scales (σ = 1, 2 and 4). We report performance both with and without the illumination prior.

For the case with the prior, we evaluate a general prior over all illuminants, as well as separate priors

for the indoor and outdoor images. To train the parameters of our model {Σk},Q′ and α, we use

three-fold cross validation where the database is split into three equal folds, and when testing on

each fold, we use the remaining images for training. A MATLAB implementation of the algorithm

is available for download [23].

Since the authors of [70] have made the estimated illuminants and errors for all evaluated

methods available, we report performance for most other methods directly from their data. How-

ever, we incorporate an important enhancement to the evaluation of grey-world and grey-edge that

improves their performance. While grey-world is often interpreted as assuming the mean color of

an image to be along [1, 1, 1] (as is the case in [70]), we posit that the mean is along some trichro-

matic unit vector ĝ. The illuminant estimate is then given by m̂ = [diag(ĝ)]−1avg(y(n)), where

avg(y(n)) is the trichromatic average of the observed image. We apply the same interpretation to

grey-edge, and learn the vector ĝ for each algorithm from a training set of images as the mean of

the unit-vectors corresponding to the pixel or edge averages of each image. We use three-fold cross

validation for this training, and to pick the optimal smoothing and norm parameters for grey-edge

as described in [70].

3.7.2 Results

We report the mean and median errors for all algorithms, as well as the “Worst-25%”

error which is a measure of robustness and refers to the mean of the 25% highest error values (note
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Table 3.1: Angular error quantiles on all 568 images from the “Color Checker” database [55]

Method Mean Median Worst 25%

Grey-world [50] 4.6◦ 4.1◦ 8.7◦

Grey-edge (1st Order) [56] 4.1◦ 3.5◦ 8.0◦

Grey-edge (2nd Order) [56] 4.0◦ 3.4◦ 7.8◦

Gamut-mapping (σ = 5) [52] 4.1◦ 2.5◦ 10.3◦

Generalized-gamut (σ = 5,1-jet) [57] 4.1◦ 2.5◦ 10.3◦

Rosenberg [55] 4.8◦ 3.5◦ 10.5◦

Proposed (ML Estimate) 3.7◦ 3.0◦ 7.6◦

Proposed (with general Prior) 3.6◦ 3.0◦ 7.4◦

Proposed (with category-wise Prior) 3.1◦ 2.3◦ 6.5◦

Table 3.2: Angular error quantiles on 246 indoor images from the “Color Checker” database [55]

Method Mean Median Worst 25%

Grey-world [50] 5.8◦ 5.5◦ 9.9◦

Grey-edge (1st Order) [56] 4.8◦ 4.1◦ 8.8◦

Grey-edge (2nd Order) [56] 4.7◦ 4.0◦ 8.5◦

Gamut-mapping (σ = 5) [52] 5.5◦ 4.3◦ 12.3◦

Generalized-gamut (σ = 5,1-jet) [57] 5.5◦ 4.4◦ 12.4◦

Rosenberg [55] 6.5◦ 5.9◦ 12.0◦

Proposed (ML Estimate) 4.2◦ 3.6◦ 8.1◦

Proposed (with general Prior) 4.2◦ 3.6◦ 7.9◦

Proposed (with category-wise Prior) 4.1◦ 3.7◦ 7.8◦

that these may correspond to different images for different methods). Table 3.1 shows quantiles for

the entire database, while Tables 3.2 and 3.3 report values separately for the indoor and outdoor

sets respectively. Additionally, Figures 3.7 and 3.8 show examples of indoor and outdoor images

respectively, corrected according to the illuminant estimates of various methods.

We first look at the relative performance of the ML estimator, without any prior infor-

mation. Over the entire database, we find that it has the lower mean and worst 25% error values
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Table 3.3: Angular error quantiles on 322 outdoor images from the “Color Checker” database [55]

Method Mean Median Worst 25%

Grey-world [50] 3.7◦ 3.1◦ 7.1◦

Grey-edge (1st Order) [56] 3.5◦ 2.9◦ 7.1◦

Grey-edge (2nd Order) [56] 3.5◦ 2.8◦ 7.1◦

Gamut-mapping (σ = 5) [52] 3.1◦ 1.8◦ 7.9◦

Generalized-gamut (σ = 5,1-jet) [57] 3.1◦ 1.8◦ 7.9◦

Rosenberg [55] 3.5◦ 2.4◦ 7.9◦

Proposed (ML Estimate) 3.3◦ 2.5◦ 7.1◦

Proposed (with general Prior) 3.2◦ 2.4◦ 6.9◦

Proposed (with category-wise Prior) 2.3◦ 1.9◦ 4.6◦

amongst all methods. The gamut-based methods have lower median errors, largely due to their

superior performance on the outdoor images that were captured in daylight. They have the lowest

mean and median errors for those images, although the proposed ML estimator appears to be more

robust with a lower worst 25% error. However, the gamut-based methods perform worse on indoor

images and have the highest error quantiles on that set after Rosenberg. In general, all algorithms

show poorer performance on the indoor set than on outdoor images, indicating that indoor scenes are

more likely to contain regions that act as outliers. However, the ML estimator performs noticeably

better than the state of the art, with the lowest values for all error quantiles on indoor images.

Next, we note that an illuminant prior, even a general one over all images, leads to an im-

provement in overall performance. The most significant improvement is to the worst 25% quantile

for all sets, indicating that the prior’s major contribution is in making the estimation process more

robust. It is worth noting here that while the performance improves overall, estimation errors on

individual images may increase as is the case for some examples in Figs. 3.7-3.8.

When the illuminant prior is defined separately over sets of indoor and outdoor images

(and it is possible that these labels may be obtained during estimation from a light-meter on the

camera or a scene-classification algorithm), the improvement in overall performance is more dra-

60



Chapter 3: Color Constancy

Input Grey-world (9.3◦) Grey-edge (3.0◦) Gen-gamut (6.2◦)

Rosenberg (4.2◦) Proposed (1.8◦) With general prior (2.0◦) With indoor prior (3.8◦)

Input Grey-world (0.9◦) Grey-edge (0.5◦) Gen-gamut (18.5◦)

Rosenberg (15.8◦) Proposed (1.5◦) With general prior (1.1◦) With indoor prior (0.7◦)

Input Grey-world (6.5◦) Grey-edge (3.5◦) Gen-gamut (4.8◦)

Rosenberg (4.7◦) Proposed (2.8◦) With general prior (2.8◦) With indoor prior (2.6◦)

Figure 3.7: Indoor images from the color checker database, corrected using different algorithms.

Angular errors for estimated illuminant are indicated below each image.
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Input Grey-world (2.5◦) Grey-edge (2.7◦) Gen-gamut (1.3◦)

Rosenberg (2.9◦) Proposed (1.4◦) With general prior (1.5◦) With outdoor prior (1.4◦)

Input Grey-world (2.5◦) Grey-edge (5.3◦) Gen-gamut (5.5◦)

Rosenberg (6.9◦) Proposed (4.4◦) With general prior (4.1◦) With outdoor prior (3.6◦)

Input Grey-world (5.7◦) Grey-edge (2.0◦) Gen-gamut (2.4◦)

Rosenberg (1.9◦) Proposed (3.2◦) With general prior (2.7◦) With outdoor prior (1.9◦)

Figure 3.8: Outdoor images from the color checker database, corrected using different algorithms.

Angular errors for estimated illuminant are indicated below each image.
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Table 3.4: Performance of grey-edge and proposed method on the “Color Checker” database [55],

with both methods using second-derivative Gaussian filters at σ = 1.

Mean Median Worst 25%

Grey-edge 4.0◦ 3.4◦ 7.8◦

Proposed (ML Estimate) 3.9◦ 3.2◦ 7.7◦

Proposed (with gen. prior) 3.7◦ 3.0◦ 7.5◦

matic. However, we note that most of this improvement is on the outdoor images, which is likely

because of relatively less variability in the set of daylight illuminants.

While the spatio-spectral model allows a natural way to combine cues across sub-bands

at multiple scales, we seek to gauge how well the proposed estimator succeeds at exploiting the

information in each sub-band. Therefore, we perform a more direct comparison of our method to the

grey-edge algorithm, by restricting the former to work on the same set of coefficients as the latter.

Table 3.4 shows the error quantiles of the two methods (over all images) when both use second-

derivative Gaussian filters at scale σ = 1, which corresponds to the best choice for grey-edge. We

find that the proposed method yields better estimates even when not using an illuminant prior, and

appears to benefit from accurately modeling the statistical structure of sub-band coefficients.

3.8 Discussion

In this chapter, we described a computational color constancy algorithm based on a model

that effectively leveraged the spatial dependencies among pixels in a color image. We first decom-

posed the image using a set of spatially-decorrelating filters, and then analyzed the statistics of their

coefficients. We found that these color coefficients are “better-behaved” than colors of individual

pixels, and enable color constancy techniques that are quite accurate and efficient. We described

two approaches for estimation: a maximum likelihood framework for when no prior information

about the illuminant is available; and for cases when one knows statistics about likely illuminants

a-priori, we introduced an illuminant model that can be incorporated during estimation for increased
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robustness.

While we confined the bulk of our discussion to computational color constancy, work in

this domain has often been motivated by and been an attempt to explain the way in which the hu-

man visual system achieves color constancy [71, 72]. Therefore, the relative success of our method

naturally raises questions about whether the human visual system employs related processing for

adaptation and color constancy. Indeed, psychophysical experiments have shown a strong inter-

action between the spatial orientation and frequency of a stimulus and the chromatic adaptation

it induces [73, 74]. The mechanisms that govern these interactions are however poorly under-

stood [73], and the machinery developed in this paper might be useful in creating experiments to

analyze them further. Separate experiments have linked the textures of familiar objects to human

color perception [75, 76], and while texture is currently thought to affect color perception through

object memory, it is worth exploring the contribution of spatial correlations to this effect.

On the computational side, interesting avenues for future research include relaxing the

two main assumptions made in most color constancy algorithms discussed in this chapter: spatially-

constant illuminant spectrum and diagonal transforms for chromatic adaptation. Even when there is

a single illuminant in the scene, mutual illumination causes the “effective” illuminant spectrum to

vary from point to point. A first step that could lead to improvement would be to remove regions

that appear to be outliers to the general statistics of the image, in the hope that these are likely to

correspond to areas with significant inter-reflections. Alternatively, one could explore variants of

the proposed method that assume the scene to be lit by a mixture of n illuminants. The problem

would then be to estimate the colors of each of these illuminants, and their relative contributions at

each pixel in the image.

The problem of moving beyond diagonal transforms is interesting as well. One path is

to estimate general linear transforms under appropriate constraints. Another is to consider a set of

registered training images taken under different illuminants, and then “learn” the functional form of

the map between corresponding pixels. The parameters of this map can then be estimated from a
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test image to do color constancy.

As was mentioned in Sec. 3.1, one of the reasons we seek color constancy is to be able

to use color as a stable descriptor. A robust illuminant estimation framework allows us to now

engage the problem of using color reliably in recognition and other visual tasks. Preliminary work

by Owens et al. [77] shows that object matching across multiple scenes and illuminant estimation

can be done jointly. However, it remains a challenge to be able to do color constancy with images

captured using consumer digital cameras that do not provide linear (RAW) image data. In this work

and in most color constancy algorithms, it is assumed that training and testing are performed with

linear images taken from the same or similar cameras. This is important, because as shown in [78],

the color spaces and non-linear processing done in cameras can vary significantly, affecting both the

sub-band statistics in {Σk} and the illuminant statistics in Q. Saenko et al. [79] look at the problem

of adapting visual category models learned from one camera to another. It would be interesting to

investigate whether the same can be done for color constancy in a way that would allow training

data from one camera or linear images to be adapted to a new domain, with minimal additional

information.

We end this discussion by noting that the model introduced in this chapter sought to

encode spatio-spectral dependencies in trichromatic images, which make just three spectral mea-

surements of the incident radiance at each pixel. In the next chapter, we study and model these

dependencies in hyperspectral images, i.e. those that have a higher spectral resolution and therefore

carry a far richer description of color.

Appendix: Additional Results

In this appendix, we report performance on another database considered in [70]. The

“Grey Ball” database[80] is a collection of 11355 images captured using a video camera. A diffuse

grey sphere is attached to the camera and is present at the same location in all images, serving
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Table 3.5: Performance of various methods on “Grey Ball” set [80]

Method Mean Median Worst 25%

Grey World [50] 12.2◦ 9.7◦ 25.4◦

Grey Edge (1st Order) [56] 10.8◦ 9.2◦ 20.9◦

Grey Edge (2nd Order) [56] 11.4◦ 9.9◦ 21.5◦

Gamut Mapping [52] 11.8◦ 8.9◦ 24.9◦

Generalized Gamut Mapping [57] 11.8◦ 8.9◦ 24.9◦

Proposed (ML Estimate) 10.3◦ 8.9◦ 20.3◦

as ground truth. It is pioneering in being the first large database of real world images captured

to evaluate color constancy methods. However, the database is highly correlated with consecutive

frames often having very little change in scene content and illumination. Furthermore, the ground

truth information is unreliable in some cases since the grey ball is close to the camera and may be

lit by a different illuminant than the scene being captured (the color charts in the database in [55]

are placed within the scene to avoid this). As such, the error values on this database need to be

interpreted with caution.

The original database includes gamma-corrected (sRGB) images, and we follow the pro-

cedure in [70] by measuring performance after applying approximate inverse gamma-correction (by

raising all intensity values to the power 2.2) to the images and recomputing the ground truth accord-

ingly. We also adopt the approach suggested in [70] for cross-validation to avoid correlated images

appearing in the training and testing sets: since the database is divided into 15 videos, we carry out

estimation on the frames of each video using using the remaining videos as training.

Table 3.5 shows error quantiles of the proposed method and compares them to those of

other algorithms. We use the evaluation results from [70] as an indicator of the performance of state-

of-the-art methods, but again, we differ in applying the learning step to grey-world and grey-edge as

described in Sec. 3.7.1. We only report errors for the ML estimator, since the prior-based estimates

have identical error quantiles. Due to lower resolution, compression artifacts, and an approximate
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gamma compensation, this database proves to be significantly more challenging with all algorithms

showing larger error values than for the color checker database in Sec. 3.7.2 (although, this could

partly be due to the unreliability of ground truth as discussed above). Nevertheless, we find that the

proposed method yields more accurate estimates than other algorithms, with the lowest values for

all quantiles.

67



4
Hyperspectral Statistics

“We never really perceive what color is physically.”

— Josef Albers

In this chapter, we explore image statistics in a new domain. Hyperspectral images pro-

vide higher spectral resolution than typical RGB images by including a large number of irradiance

measurements in the visible spectrum, at every pixel. This additional spectral resolution is poten-

tially useful for visual tasks, such as segmentation, recognition, and relighting. We present a new

database of fifty hyperspectral images of natural indoor and outdoor scenes, and use this database to

explore hyperspectral statistics. Vision systems that seek to capture and exploit hyperspectral data

should benefit from statistical models of natural hyperspectral images. Additionally, these mod-

els provide greater access (than models in RGB) to information about the spatio-spectral structure

of scene radiance. We derive an optimized joint spatio-spectral basis for representing hyperspec-

tral image patches. Then, we explore the statistical properties of the coefficients in this basis, and

investigate the dependencies between different coefficients.
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Figure 4.1: Typical digital cameras (Left) make just three measurements of the incident radiance,

to yield trichromatic images with three recorded values at each pixel (eg. RGB). Hyperspectral

cameras (Right) seek higher spectral resolution and make a larger number of measurements at each

pixel (eg. corresponding to multiple narrow wavelength-band filters in the visible spectrum).

4.1 Introduction

Most cameras are concerned with capturing images and videos for display to humans,

and therefore capture three spectral measurements (red, green, blue) to match human trichromacy.

However, the spectral power density of the incident visible radiance is a continuous function of

wavelength which carries information beyond these measurements. Since this information can be of

use to vision systems, researchers have looked at acquiring and processing “hyperspectral” images,

meaning those that provide a dense spectral sampling at each pixel (see Fig. 4.1). These images have

proven useful in many domains, including remote sensing [81–85], medical diagnosis [86–88], and

biometrics [89], and it seems likely that they will be beneficial for inference tasks on everyday

scenes as well.

In this chapter, we establish the basic statistical structure of hyperspectral images of “real-

world” scenes, such as offices, streetscapes, and parks, that we encounter in everyday life. Such a

characterization gives us a more complete understanding of the spatio-spectral structure of scene

radiance, than comparable analysis of RGB data. Furthermore, when developing vision systems

that acquire and exploit hyperspectral imagery, we can benefit from knowledge of the underlying

statistical structure. By modeling the inter-dependencies that exist in the joint spatio-spectral do-

main, we should be able to build, for example, more efficient systems for capturing hyperspectral
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images and videos, that are able yield accurate reconstructions from fewer measurements and are

able to deal with noise and other imperfections in the capture process. Furthermore, it is important

to understand these dependencies when developing algorithms for visual inference tasks, such as

segmentation and recognition.

While previous analyses have separately considered the spectral statistics of point sam-

ples [90–92], we consider the spatial and hyperspectral dimensions jointly to uncover additional

structure. Using a new collection of fifty hyperspectral images captured with a time-multiplexed

31-channel camera, we evaluate difference choices of spatio-spectral bases for representing hyper-

spectral image patches and find that a separable basis is appropriate. Then, we characterize the

statistical properties of the coefficients in this basis and describe models that capture these proper-

ties effectively.

4.2 Related Work

Our work is motivated by successes in analyzing and modeling the statistical properties

of greyscale [9, 93, 94] and trichromatic [95–99] images. In the previous chapters, we have seen

how such models can enable accurate visual inference— for estimating motion blur and illuminant

spectra. But image statistics have found applications in a variety of domains. They have proven

useful for inferring accurate images from noisy and incomplete measurements, with applications in

denoising [13, 100], restoration [6, 101] and demosaicking [15, 58], and have also use as building

blocks for higher-level visual tasks such as segmentation and object detection [102–104]. Our goal

here is to develop comparable models for hyperspectral data, by considering the joint statistics of

variations with respect to space and wavelength.

The study in this chapter is enabled by recent advances in hyperspectral capture sys-

tems, such as those based on spatial-multiplexing with generalized color filter arrays [105], spatial-

multiplexing with a prism [106], time-multiplexing with liquid crystal tunable filters [107, 108],
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and time-multiplexing with varying illumination [109, 110]. Prior to these advances, studies of real-

world spectra have been limited to collections of point samples, such as those collected by a spec-

trometer. These studies have suggested, for example, that the spectral reflectances of “real-world”

materials are smooth functions that can be represented with 6-8 principal components [91, 92, 96]

(or a suitable sparse code [90]), and that the spectra of daylight and other natural illuminants can be

represented with even fewer principal components [111]. One of our goals in this study is to move

beyond point samples, and to investigate the properties of variations in spectral distributions within

spatial neighborhoods.

We expect that accurate statistical models will aid in the design of efficient hyperspectral

acquisition systems. Many proposed acquisition methods seek to reconstruct full spectral images

from a reduced set of measurements based on assumptions about the underlying statistics [105, 110].

Such methods are likely to benefit from accurate statistical models that are learned from real-world

hyperspectral data. These models may also prove useful for other applications, such as relighting,

segmentation, and recognition.

Other hyperspectral datasets that are related to the one introduced here include those of

Hordley et al. [108] and Yasuma et al. [105]. These datasets include 22 and 32 hyperspectral images,

respectively, and they are focused on objects captured with controlled illuminants in laboratory

environments. More related is the database of 25 hyperspectral images of outdoor urban and rural

scenes captured by Foster et al. [107]. A primary aim of our work has been to capture and analyze

a larger database that includes both indoor and outdoor scenes.

4.3 Hyperspectral Image Database

To enable an empirical analysis of the joint spatio-spectral statistics of real-world hyper-

spectral scenes, a commercial hyperspectral camera (Nuance FX, CRI Inc.) was used to collect a

database of fifty images under daylight illumination, both outdoors and indoors. As illustrated in
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Figure 4.2: Commercial hyperspectral camera (Nuance FX, CRI Inc.) with apo-chromatic lens

used to capture images in the database. The camera is equipped with a greyscale sensor and

a liquid crystal tunable filter that can be tuned to have 10nm wavelength pass bands centered at

steps on 10nm (see Fig. 4.1). (Left) A 31-channel hyperspectral image is captured through time-

multiplexed measurements by tuning the filter sequentially to each of these bands and capturing an

image stack. (Right) The effective per-band sensitivity is a combination of the filter transmittance

and wavelength-dependent sensor efficiency.

Fig. 4.2, the camera uses an integrated liquid crystal tunable filter and is capable of acquiring a hy-

perspectral image by sequentially tuning the filter through a series of thirty-one narrow wavelength

bands, each with approximately 10nm bandwidth and centered at steps of 10nm from 420nm to

720nm. Figure 4.2 (right) shows the relative sensitivity of the camera for each wavelength band,

accounting for both the quantum-efficiency of the 12-bit greyscale sensor and the per-band trans-

mittance of the effective filters. The camera is equipped with an apo-chromatic lens (CoastalOpt

UV-VIS-IR 60mm Apo Macro, Jenoptik Optical Systems, Inc.) and in all cases we used the small-

est viable aperture setting. The combination of the apo-chromatic lens and the avoidance of a

mechanical filter wheel allows us to acquire images that are largely void of chromatic aberration

and mis-alignment. To avoid contaminating the statistics by having different per-band noise levels,

we did not vary the exposure time across bands or normalize the captured bands with respect to

sensitivity. Therefore, all results in this chapter must be interpreted relative to the camera sensitivity

function, with the exception of Sec. 4.4.2 which discusses “camera-independent” statistics (after

making specific assumptions).

Due to the use of small apertures and the low transmittance of individual bands, the total
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acquisition times for an entire image (i.e., all wavelength bands) are high and vary from fifteen

seconds to over a minute. Accordingly, all images were captured using a tripod and by ensuring

minimal movement in the scene. Since having a perfectly static scene is often not feasible, in the

interest of having a diverse dataset, we have captured images with movement in some regions— but

these regions (and other areas affected by dust, etc.) are masked out manually before analysis. We

note that as a result, any regions with people in the captured scenes are masked out, and our analysis

does not include samples of human skin tones.

The captured dataset includes images of both indoor and outdoor scenes featuring a di-

versity of objects, materials and scale (see Fig. 4.3 for a few example images rendered in sRGB).

We have also captured twenty-five additional images taken under artificial and mixed illumination,

and while these are not used for the analysis presented in this work, they have been made available

to researchers along with the fifty natural illumination images [24]. We believe the database to be a

representative sample of real-world images, capturing both pixel-level material statistics and spatial

interactions induced by texture and shading effects. In addition to the analysis here, these images

may be useful “ground truth” to design and evaluate methods for various acquisition and vision

tasks that use hyperspectral data. They can also be used to synthetically generate ground truth RGB

images that correspond to true trichromatic measurements at each pixel, rather than those estimated

through demosaicking.

4.4 Spatio-Spectral Representation

We begin by exploring efficient representations for hyperspectral images. As is common

practice with greyscale and RGB images, we first divide the entire image into patches and consider

the properties of each patch independently. Let X[n, l] be a random P × P hyperspectral image

patch, where n ∈ {1, . . . P}2 and l ∈ {1, . . . 31} index pixel location and spectral band respectively.

For the rest of this chapter, we choose the patch size P = 8, but the results and conclusions from
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Figure 4.3: Example scenes from the captured database, rendered here in sRGB. The database con-

tains a diverse set of images of outdoor and indoor scenes, with fifty images illuminated by daylight

and an additional twenty-five under artificial and mixed illumination. Regions with unreliable data

(due to movement during exposure, etc.) were labeled manually, and are shown here with red masks.

different choices of P are qualitatively the same.

Since X is high-dimensional, we seek a representation that allows analysis in terms of a

smaller number of components. Formally, we wish to find an optimal orthonormal basis set {Vi} and

express X in terms of scalar coefficients xi as

X[n, l] = µ[n, l] +
∑

i

xiVi[n, l], (4.1)
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Figure 4.4: General basis for 8 × 8 hyper-spectral patches learned across the database. Left: most

significant basis vectors (in reading order) rendered in RGB. Right: normalized variance of the

coefficients for the first 200 basis vectors. The variance decays rapidly indicating that a small

proportion of components are sufficient for accurate reconstruction.

where µ[n, l] is the “mean patch” and

xi = 〈X − µ,Vi〉n, l =
∑

n,l

Vi[n, l] (X[n, l] − µ[n, l]). (4.2)

We learn a set of general basis vectors using principal component analysis (PCA) on

patches cropped from images in the database, through eigen-decomposition of their empirical co-

variance matrix. This corresponds to choosing a basis that ensures maximal “energy compaction”,

i.e. the set of basis vectors is chosen such that every truncated sub-set {Vi′}ii′=1
minimizes the ex-

pected “reconstruction error” from that subset, defined as

ǫ(i) = E

∥

∥

∥

∥

∥

∥

∥

















µ[n, l] +

i
∑

i′=1

xi′Vi′[n, l]

















− X[n, l]

∥

∥

∥

∥

∥

∥

∥

2

. (4.3)

Figure 4.4 shows the top twenty components rendered in RGB, as well as the variance for

the top 200 components. We see that the first two Vi essentially correspond to spatially-constant

“DC” components with distinct spectra, followed by vertical and horizontal derivative components.

We also find that there is a steep fall off in variance indicating that X can be described accurately by

a relatively small number of coefficients. Indeed, the first 20 basis vectors (out of a total of 1984)

account for 99% of the total variance.
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4.4.1 Separable Basis Components

Notice that the basis components in Fig. 4.4 has sets of vectors with similar spatial patterns

but different spectra or “colors”. Therefore, we next investigate the efficiency of a separable basis

{Vi}, that is formed as a Cartesian product of two orthonormal basis sets {S j[n]}P2

j=1
and {Ck[l]}31

k=1
,

that span the space of monochrome P×P spatial patches and the space of 31-channel spectral distri-

butions, respectively. Every Vi can therefore be expressed as Vi[n, l] = V jk[n, l] = S j[n]Ck[l], for

some values of j and k, and we denote the coefficient along V jk as x jk, where x jk =
〈

X − µ, S jCk

〉

n, l
.

Note that by construction, the vectors {V jk} are orthonormal since

〈

V jk,V j′k′
〉

n, l
=

∑

n,l

S j[n]Ck[l] S j′[n]Ck′[l] =















∑

n

S j[n]S j′[n]































∑

l

Ck[l]Ck′[l]

















=
〈

S j, S j′
〉

n
〈Ck,Ck′〉l =



























1 if j = j′, k = k′,

0 otherwise.

(4.4)

As before, we use a training set to learn the optimal separable basis {V jk}, which corre-

sponds to learning the optimal spatial and spectral components {S j} and {Ck}. Let us assume that

we know the optimal spatial basis, and only have to estimate the spectral components {Ck}. For

energy compaction, we wish to choose these components such that for every k, the reconstruction

error, when using components composed of all {S j} and the truncated set {Ck′}kk′=1
, is minimized.

This error is given by

ǫc(k) = E

∥

∥

∥

∥

∥

∥

∥

∥
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= E‖X − µ‖2 −
∑

j

k
∑

k′=1

E

〈

X − µ, S jCk′
〉2

n, l

= E‖X − µ‖2 −
∑

n

k
∑

k′=1

E 〈X − µ,Ck′〉2l . (4.5)

We note the reconstruction error is independent of the choice of {S j}, and therefore the

optimal spectral components {Ck} can be computed using PCA on the spectral distributions of indi-

vidual pixels. This reasoning also holds when computing the optimal spatial basis {S j}, which can
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Figure 4.5: Learned separable basis, with most significant (Left) spatial components {S j[n]}, and

(Right) spectral components {Ck[l]}. The overall separable basis is constituted by taking a Cartesian

product of these two sets, i.e. by forming basis vectors as S j[n]Ck[l], for ever pair ( j, k).

be learned through PCA on monochrome patches pooled across all bands. Figure 4.5 shows the first

few spatial and spectral components, {S j} and {Ck}, learned in this manner from the database. The

spatial components correspond to a DCT-like basis used commonly for modeling greyscale images,

with S 1 corresponding to the “DC” component. The spectral components in turn resemble a Fourier

basis scaled by the camera’s sensitivity function (see Fig. 4.2), where C1 can be loosely interpreted

as the average brightness or “luminance”.

Given the individual spatial and spectral bases, we can compute the energy or variance

for every combination (i.e. E x2
jk

) and sort these combinations according to this variance. This

establishes a unique map from every pair ( j, k) to an index i ∈ {1, . . . P2 × 31}, such that the overall

reconstruction error ǫ(i) is minimized. In Fig. 4.6, we compare this reconstruction error to that

of the general joint basis. We find that the two have near-identical reconstruction errors for the

same number of components, indicating that separable basis is equally efficient. A wavelet-based

separable basis, with the spatial components {S j} corresponding to Haar wavelets, is also included

for comparison.

Figure 4.7 shows the map from the pairs ( j, k) to index i (truncated to i ≤ 15 for clarity),
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Figure 4.6: Comparison of different spatio-spectral basis sets in terms relative reconstruction error

using a limited number of components. The figure compares a general basis set to one restricted to

having separable spatial and spectral components. The separable basis has near identical reconstruc-

tion error to the general basis, indicating that it is equally efficient. The efficiency of a separable set

with Harr wavelets as the spatial basis is also shown.

and illustrates the relative importance of different combinations of the spatial and spectral basis vec-

tors in Fig. 4.5. We see that the combinations of the first spectral component (i.e. the luminance)

with various spatial components typically have higher variance than vectors involving higher spec-

tral components. Fig. 4.8 provides another look at the variance in this separable basis. For each of

the top spatial components, it plots the variance for their combination with each of the top spectral

components. We find that the these curves show similar decays along the spectral dimension, indi-

cating that the total variance in the different spatial components is distributed in similar proportions

amongst their spectral coefficients.

4.4.2 Camera-independent Basis

So far, we have looked at representations for patches relative to the camera’s sensitivity

function shown in Fig. 4.2. Since this function is known, it is possible to compute the corresponding

statistics for hyperspectral images captured by a different device with a different sensitivity, after

making appropriate assumptions about the observation noise in the database. As a specific case of

this, we look at properties of images captured by a hypothetical camera that has a flat sensitivity
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Figure 4.7: Relative importance of different combinations of the spatial and spectral components

S j and Ck, in terms of variance. Shown here is the map from every pair ( j, k) to the index i of

the corresponding joint basis vector V jk. Note that combinations of the first spectral component C1

(i.e. luminance) with various S j often rank higher than the combinations of S 1 (i.e. DC) with the

higher spectral components Ck, k > 1.

Figure 4.8: Variances in combinations with different spectral components, for the first five spatial

components. The horizontal grid lines correspond to the values of the DC component S 1. Note that

the different S i have similar decays along the spectral dimension.

function. These can be interpreted as the properties of the underlying scene itself, without varying

attenuation applied to the different wavelength bands.

Formally, we relate the captured hyperspectral patch X[n, l] to the true un-attenuated

version Xt[n, l] as

X[n, l] = s[l]Xt[n, l] + z[n, l], (4.6)

where s[l] is the known camera sensitivity, and z[·] is observation noise. Following the analysis
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Figure 4.9: Basis vectors for hyperspectral patches from a camera with uniform sensitivity. Left:

Most significant joint basis vectors, rendered in sRGB. Right: Spectral basis vectors {Ctk} that,

combined with the spatial vectors {S j} in Fig. 4.5, define an efficient separable basis.

above, we seek to find the optimal basis for Xt through an eigen-decomposition of the covariance

matrix EXtX
T
t . We assume white Gaussian noise, z[n, l]

i.i.d∼ N(0, σ2
z ), which gives us the following

relation between the covariances of X and Xt:

EX2
t [n, l] = s−2[l]

(

EX2[n, l] − σ2
z

)

,

EXt[n, l]Xt[n
′, l′] = s−1[l]s−1[l′]EX[n, l]X[n′, l′], if n , n′ or l , l′. (4.7)

We use the values of EXXT estimated from our database, and we set the noise variance σ2
z to be

equal to half of its lowest eigen-value, i.e., half the variance along the least significant basis vector.

We can now compute the covariance matrix for Xt, and the optimal basis vectors thus obtained

through PCA are shown in Fig. 4.9 (left).

Since X was shown in Sec. 4.4 to be represented efficiently using a separable basis and

the camera sensitivity is the same for all pixels, it follows that the basis for Xt is also separable,

and composed of the same spatial basis {S j[n]} as for X and a spectral basis {Ctk[l]} shown in

Fig. 4.9 (right). As expected, from comparing Fig. 4.9 to Fig. 4.5, we find that spectral basis vectors

{Ctk[l]} for Xt represent an orthogonalized version of {s−1[l]Ck[l]}.
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We can also use our estimates of the covariance matrix of Xt to explore how efficient the

human cone responses are at capturing the variance in the scenes in our database. We find that

the sub-space spanned by the CIE XYZ vectors (designed to match the spectral response of human

visual system) account for 77.22% of the total variance in Xt. In comparison, the first three eigen-

vectors {Ctk}2k=0
account for 99.14% of the total variation. However, it is important to remember that

human cone responses are restricted to have non-negative responses at all wavelengths (as is true

with any set of sensors). Also, the human visual system is likely to have evolved in different en-

vironments, and to be optimal for capturing spectral information helpful for specific discriminative

tasks.

Note that the assumption made in this section about the noise being i.i.d Gaussian, and

the manner in which its variance is chosen are approximations. Indeed, observation noise in typical

camera sensors is known to be Poisson distributed [112]. Therefore, while this analysis is helpful in

building intuition, we return to working with the camera-relative bases in subsequent sections.

4.5 Coefficient Models

Having identified a separable spatio-spectral basis we now explore statistical models for

coefficients in this basis. We look at distributions for each coefficient individually, as well as joint

models for different spectral coefficients along the same spatial basis.

4.5.1 Modeling Individual Coefficients

Let x jk be the coefficient of X in the basis component V jk = S j[n]Ck[l]. We begin by

looking at empirical distributions of the “DC” coefficients x1k in Fig. 4.10 (top). As was the case for

per-pixel distributions in Chapter 3, we find that these distributions differ qualitatively from those

of the other coefficients shown in Fig. 4.10 (bottom), and exhibit comparatively less structure. In

applications with greyscale and RGB images, DC coefficients are found to be poorly described by
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Figure 4.10: Empirical Histograms of coefficients in the separable basis. Histograms of (Top) DC

coefficients corresponding to the first two spectral components (i.e. x11 and x12); and (Bottom) co-

efficients along the second spatial component (x21 and x22). The DC distributions are relatively

unstructured compared to those for higher spatial components. The latter are symmetric and heavy-

tailed (a Gaussian distribution with the same variance is shown for comparison), and can be accu-

rately described by a Gaussian-mixture.

standard probability distributions and are often simply modeled as being uniform (for example, they

were not used for inference in Chapters 2 and 3), and we do the same here.

The statistics of the higher spatial coefficients (x jk for j > 1) are more interesting. Fig-

ure 4.10 (bottom) shows empirical distributions of x21 and x22 (the second spatial component). We

see that these distributions are zero-mean, uni-modal, symmetric, and more kurtotic than a Gaus-

sian distribution with the same variance, with heavier tails and a higher probability mass near zero.

This matches intuition from greyscale and RGB image analysis that higher spatial sub-band coef-

ficients are “sparse”. While a variety of parametric forms could be used to model the distributions

of these coefficients (generalized Gaussians, Gaussian Scale Mixtures, etc.), we choose to use a

finite mixture of zero-mean Gaussians that has the advantage of allowing tractable inference, while

also being able to accurately express a variety of distribution shapes with the appropriate choice of

model parameters.
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Formally, we define

p(x jk) =

Z
∑

z=1

p(z jk = z)N
(

x jk|0, σ2
jk,z

)

, (4.8)

where z jk ∈ {1, . . .Z} is a latent index variable indicating that x jk is distributed as a Gaussian with the

corresponding variance σ2
jk,z

. Without loss of generality, we assume that the mixture components

are sorted by increasing variance. The model parameters {p(z jk = z), σ2
jk,z
}z are estimated from

the database using Expectation Maximization (EM) [48], and in practice we find that mixtures

of eight Gaussians (i.e. Z = 8) are able to fit the empirical distributions for all coefficients with

reasonable accuracy. These fits for the coefficients x21 and x22 are shown superimposed on the

empirical histograms in Fig. 4.10 (bottom).

4.5.2 Joint Models

Since the spatio-spectral basis vectors have been estimated through PCA, it follows that

x jk and x jk′ will be uncorrelated for k , k′, i.e. E(x jkx jk′) = 0. However, given the model for

individual coefficients in (4.8), this does not necessarily imply that they will be independent. In-

deed, different spatial coefficients at the same spatial location in greyscale images are known to be

related [14]. We now demonstrate that different spectral coefficients along the same spatial basis are

also mutually dependent, and propose a model that encodes these dependencies. This expands on

our intuition in Chapter 3 that sub-band color coefficient vectors have ellipsoidal equi-probability

contours.

We begin by examining whether knowing the value of the mixture index z jk carries any

information about the statistics of the coefficient x jk′ for a different spectral component k′ along the

same spatial basis j, as illustrated in Fig. 4.11 (left). We define σ2
jk′ |z jk

(z) to be the variance of x jk′

conditioned on the mixture index z jk being z, and estimate it from a set of training patches {Xi} from

the database, as

σ2
jk′ |z jk

(z) =

∑

i p(z jk = z|xi
jk

)(xi
jk′)

2

∑

i p(z jk = z|xi
jk

)
, (4.9)
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Figure 4.11: Test for coefficient independence. (Left) We seek to determine whether the index vari-

able for one spectral coefficient has any effect on the statistics of other coefficients for the same

spatial basis. (Right) Expected standard deviation of x2k′ conditioned on the index variable z21. We

find that when x21 belongs to a mixture component having higher standard deviation σ21,z (hori-

zontal axis), the other spectral components x2k′ have higher standard deviations σ2k′ |z21
(z) (vertical

axis) as well. This implies that the different spectral coefficients are not independent, because if

they were, these curves would be horizontal.

where p(z jk = z|xi
jk

) is computed for every training coefficient as

p(z jk = z|xi
jk) =

p(z jk = z)N(xi
jk
|0, σ2

jk,z
)

∑

z′ p(z jk = z′)N(xi
jk
|0, σ2

jk,z′)
. (4.10)

Figure 4.11 (right) shows these variances for different coefficients x2k′ conditioned on the mixture

index z21 for the first spectral coefficient, and compares them to the corresponding mixture com-

ponent variances σ2
21,z

. If the coefficients were independent, the value of one index variable would

have no effect on the variance of other coefficients. However, we see that variance σ2
jk′ |z jk

does

indeed vary with the value of z jk, which implies that the different spectral coefficients are mutu-

ally dependent. Specifically, when the first spectral coefficient x21 belongs to a mixture component

having higher variance, the expected variances of the other spectral coefficients {x2k′} increase as

well.

To capture this relationship, we update the model in (4.8) by including a joint distribu-

tion p({z jk}k) on the mixture indices corresponding to different spectral coefficients along the same

spatial basis as

p({x jk}k) =
∑

z1,z2,...

p({z jk = zk}k)
∏

k

N(x jk|0, σ jk,zk
). (4.11)
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Note that this is only one possible choice for a joint model. Other choices include using a radial-

exponential distribution (as was done in Chapter 3) or a multi-variate Gaussian-mixture. While the

former allows only the variance of the distribution to be tuned but with a fixed shape, the latter is

more expressive but has a much larger number of parameters (it needs to learn a covariance matrix

across all spectral dimensions for each mixture component). The model in (4.11) offers a reasonable

compromise between the number of parameters and control over distribution shape. Furthermore,

the marginal distribution for any single coefficient under this model is the same as the one in (4.8).

Therefore, to fit this model, we first learn {p(z jk = z), σ jk,z} for each coefficient x jk individually as

before. We can then estimate the joint distribution of the indices p({z jk}k) from the set of training

patches {Xi} as

p({z jk = zk}k) ∝
∑

i

∏

k

p(z jk = zk|xi
jk). (4.12)

This allows us to learn joint distributions over any subset of coefficients depending on the applica-

tion, and models for overlapping sets are guaranteed to be consistent (i.e. have the same marginal

distributions, etc.).

Having fit this model, we can use the learned joint distribution of the mixture indices

p({z jk}k) to reason about the relationships between the corresponding coefficients {x jk}k. Figure 4.12

shows the estimated conditional distributions p(z2k′ |z2k) for different pairs of spectral coefficients

along the spatial basis S 2. As expected, these distributions are different from the corresponding

marginal distributions p(z2k′) (also shown for comparison). We find that conditioned on the mixture

index z2k having a value corresponding to higher mixture component variance, the index z2k′ for a

different spectral coefficient x2k′ is more likely to correspond to higher variance mixture component

as well, which is consistent with our observations in Fig. 4.11. Therefore, observing a high mag-

nitude value for one coefficient makes a high value for another spectral coefficient along the same

spatial basis more likely. This joint model can be exploited during inference, for example, when

estimating a hyperspectral image from noisy or incomplete observations.
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Figure 4.12: Relationship between mixture indices. Conditional distributions of the mixture indices

p(z2k′ |z2k) for different pairs of spectral coefficients along the same spatial basis S 2. Knowing the

value of the mixture index z2k for one spectral coefficient changes the distribution of the index z2k′ ,

corresponding to a different spectral coefficient, from the marginal distribution p(z2k′) (shown with

dotted black line for comparison). Broadly, these graphs suggest that higher/lower magnitudes of

one coefficient make higher/lower magnitudes respectively for other coefficients, along the same

spatial basis, more likely.

4.6 Discussion

In this chapter, we examined the joint spatial and spectral statistics of hyperspectral im-

ages using a new database of real-world scenes. We found that a separable basis, composed of

independent spatial and spectral components, serves as an efficient representation for hyperspectral

patches, and we studied the relative variance in these components. We then explored the statisti-
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cal properties of coefficients in this basis and found that higher-frequency spatial components are

accurately described by Gaussian mixture models. We also established that for the same spatial sub-

band, different spectral coefficients are mutually dependent, and we described a joint distribution

for mixture indices for different coefficients that encodes these dependencies.

A natural application of the statistical characterization described here is in hyperspectral

imaging. In the future, acquisition systems should exploit the interdependencies and correlations

between different spatio-spectral components, so as to efficiently acquire hyperspectral images with

fewer measurements. General color filter array patterns (such as those proposed in [105]) can be

designed to trade off spatial and spectral accuracy based on the relative variances of different compo-

nents, and reconstruction methods can use the joint coefficient models during estimation. Similarly,

these statistics are likely to be useful when estimating “clean” hyperspectral images from observa-

tions degraded by noise, blur, chromatic aberration, etc. The database can be used as “ground truth”

to evaluate different strategies for these applications.

This chapter presents a first look at spatio-spectral statistics and representations for hyper-

spectral images. Further research in this direction should include studies on the statistics of specific

classes of objects or regions in hyperspectral images, and ways to leverage these statistics for vision

applications. In addition to hyperspectral object models for recognition, understanding the differ-

ence in the statistics of homogenous regions with variations due to shading, relative to those of

regions that include material boundaries, may be useful for segmentation and recovering “intrinsic

images” [16]. Furthermore, these models can be expanded to include wavelengths beyond the visi-

ble spectrum, for example, to study the redundancies in the information carried by the infra-red and

long wavelength visible bands.

Other avenues of future work include looking at representations derived using more so-

phisticated techniques such as independent component analysis and fields of experts [9], with the

choice of representation likely to be geared towards specific vision tasks. It would also be interesting

to evaluate the utility of sparse codes, which have been previously proposed to describe spatial and
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spectral components independently in hyperspectral data [110]. Our observation about the mutual

dependence between spectral coefficients for different spatial bands suggests that it would be useful

to consider joint spatio-spectral coding strategies.
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In this dissertation, we focused on the utility of statistical inference for problems in com-

puter vision. When the observed image does not uniquely determine the parameters we seek to

estimate, we showed that knowledge of the statistical properties of natural images, as well as those

of other scene parameters, can be used to arrive at a solution. We discussed the need for choosing

a modeling strategy that is adapted to the task at hand, and noted how this often involves making

assumptions to simplify inference, while leveraging the statistical properties that are useful for that

particular estimation problem.

We used this intuition in developing novel estimation algorithms for two vision applica-

tions. The first looked at estimating the parameters of spatially-varying motion blur in an image.

Since blur acts on the texture content of images (but uniformly across color channels), we used a

model that encoded the properties of sharp edges in greyscale, taking care to account for the arbi-

trary variation in the contrast of these edges from region to region. We found that we also had to

use a per-pixel color model in conjunction with this edge model to yield robust estimates.

The second application, color constancy, has a very different formulation. Here, a spatially-

uniform illuminant affected the colors of the observed scene at the pixel level, and therefore the

statistics of color in natural images had to be central to our approach. But we found that instead of

modeling the statistics of individual pixels, the colors of image derivatives were more informative

and easier to encode efficiently. Our proposed algorithm for this task also included an example of

modeling the statistical properties of other scene parameters, in this case the illuminant color, to

improve accuracy.

Hence, we introduced two very different statistical models for the same class of signals,

i.e. canonical images of natural scenes. Neither of these models is strictly more accurate than the

other, it is just that they encode different aspects of image statistics, and were chosen to allow

efficient and accurate inference for specific tasks. In addition to providing robust estimates for

their respective applications, these algorithms helped to illustrate the design choices that need to be

made when crafting a statistics-based algorithm for visual inference. Besides choosing appropriate
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image models for each application, these design choices included using a convenient local Fourier

representation for blur analysis, and a conjugate form for the illuminant distribution in the color

constancy method.

While other inference tasks are likely to need image models that are specifically adapted,

the models we proposed for the blur and illuminant estimation tasks can serve as useful starting

points. For example, the image model used for blur estimation essentially provides a mathematical

framework that favors image gradients being sharp, or spatially localized. While we used this model

for the case when this sharpness was affected by convolution with a blur kernel, the same framework

is likely to be useful for analyzing, say, the effect of a spatially smooth shading map being multiplied

with the underlying sharp material boundaries.

The spatio-spectral approach used for the color constancy application, that jointly mod-

eled the statistical properties of color and texture, is also likely to be useful for other tasks that deal

with color and material properties. That is why in Chapter 4, we did away with the constraint of

working with three channel images and explored these joint statistics for hyperspectral data. As

described in that chapter, these statistics are directly useful when designing hyperspectral cameras

and vision systems that use hyperspectral images as input. But the proposed representations and

statistical models for hyperspectral data can also be used to obtain deeper insights into the proper-

ties of regular RGB images, which can be thought of as “spectrally downsampled” projections of

their hyperspectral counterparts.

Current research trends in computer vision indicate that image statistics will have a cru-

cial role to play as we move to new modalities of imaging. The emerging field of Computational

Photography provides new and exciting opportunities to deploy image models, as we consider in-

ference on observations not restricted to being images taken by traditional cameras. With the goal of

recording more than just a projection of the light incident on the sensor plane, camera systems have

been proposed that modify the capture process in a variety of ways— using coded apertures [41],

programmable shutters [113], diffusion films [114], camera motion [115], etc.
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In Chapter 2, we used blur in images from traditional cameras to reason about object

motion. Computational cameras are often designed to deliberately introduce blur and other image

distortions into the capture process in a controlled manner, using the resulting observations to either

extract information that would not be present in a traditional image (such as depth, higher dynamic

range,etc.), or to compensate for some other form of degradation during capture (such as defocus or

motion blur, noise, etc.). To make optimal use of this flexibility to change the acquisition process

itself, appropriate statistical models should be used to design the best capture strategy, and for

estimation on the acquired data.
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